-
1
-
-
84863380535
-
Unsupervised feature learning for audio classification using convolutional deep belief networks
-
Dec
-
H. Lee, Y. Largman, P. Pham, and A. Y. Ng, "Unsupervised feature learning for audio classification using convolutional deep belief networks," in Proc. NIPS, Dec. 2009, pp. 1096-1104.
-
(2009)
Proc. NIPS
, pp. 1096-1104
-
-
Lee, H.1
Largman, Y.2
Pham, P.3
Ng, A.Y.4
-
2
-
-
84873584268
-
Learning features from music audio with deep belief networks
-
P. Hamel and D. Eck, "Learning features from music audio with deep belief networks," in Proc. ISMIR, 2010, pp. 339-344.
-
(2010)
Proc. ISMIR
, pp. 339-344
-
-
Hamel, P.1
Eck, D.2
-
3
-
-
84865754610
-
Deep belief networks for automatic music genre classification
-
X. Yang, Q. Chen, S. Zhou, and X. Wang, "Deep belief networks for automatic music genre classification," in Proc. Interspeech, 2011, pp. 2433-2436.
-
(2011)
Proc. Interspeech
, pp. 2433-2436
-
-
Yang, X.1
Chen, Q.2
Zhou, S.3
Wang, X.4
-
4
-
-
84888315556
-
Feature learning and deep architectures: New directions for music informatics
-
E. J. Humphrey, J. P. Bello, and Y. LeCun, "Feature learning and deep architectures: New directions for music informatics," J. Intell. Inf. Syst., vol. 41, no. 3, pp. 461-481, 2013.
-
(2013)
J. Intell. Inf. Syst
, vol.41
, Issue.3
, pp. 461-481
-
-
Humphrey, E.J.1
Bello, J.P.2
LeCun, Y.3
-
6
-
-
84904617301
-
A deep learning approach to rhythm modeling with applications
-
A. Pikrakis, "A deep learning approach to rhythm modeling with applications," in Proc. Int. Workshop Mach. Learn. Music, 2013, pp. 1-4.
-
(2013)
Proc. Int. Workshop Mach. Learn. Music
, pp. 1-4
-
-
Pikrakis, A.1
-
7
-
-
84905259152
-
Improved music feature learning with deep neural networks
-
May
-
S. Sigtia and S. Dixon, "Improved music feature learning with deep neural networks," in Proc. ICASSP, May 2014, pp. 6959-6963.
-
(2014)
Proc. ICASSP
, pp. 6959-6963
-
-
Sigtia, S.1
Dixon, S.2
-
8
-
-
84905248193
-
End-to-end learning for music audio
-
May
-
S. Dieleman and B. Schrauwen, "End-to-end learning for music audio," in Proc. ICASSP, May 2014, pp. 6964-6968.
-
(2014)
Proc. ICASSP
, pp. 6964-6968
-
-
Dieleman, S.1
Schrauwen, B.2
-
9
-
-
84905270374
-
A deep representation for invariance and music classification
-
May
-
C. Zhang, G. Evangelopoulos, S. Voinea, L. Rosasco, and T. Poggio, "A deep representation for invariance and music classification," in Proc. ICASSP, May 2014, pp. 6984-6988.
-
(2014)
Proc. ICASSP
, pp. 6984-6988
-
-
Zhang, C.1
Evangelopoulos, G.2
Voinea, S.3
Rosasco, L.4
Poggio, T.5
-
10
-
-
84908869704
-
Intriguing properties of neural networks
-
C. Szegedy et al., "Intriguing properties of neural networks," in Proc. ICLR, 2014, pp. 1-9.
-
(2014)
Proc. ICLR
, pp. 1-9
-
-
Szegedy, C.1
-
11
-
-
84918593356
-
Making explicit the formalism underlying evaluation in music information retrieval research: A look at the {MIREX} automatic mood classification task
-
B. L. Sturm, "Making explicit the formalism underlying evaluation in music information retrieval research: A look at the {MIREX} automatic mood classification task," in Proc. Comput. Music Modeling Res., 2014, pp. 89-104.
-
(2014)
Proc. Comput. Music Modeling Res
, pp. 89-104
-
-
Sturm, B.L.1
-
12
-
-
84902659726
-
The state of the art ten years after a state of the art: Future research in music information retrieval
-
B. L. Sturm, "The state of the art ten years after a state of the art: Future research in music information retrieval," J. New Music Res., vol. 43, no. 2, pp. 147-172, 2014.
-
(2014)
J. New Music Res
, vol.43
, Issue.2
, pp. 147-172
-
-
Sturm, B.L.1
-
13
-
-
84948958347
-
¿el Caballo Viejo? Latin genre recognition with deep learning and spectral periodicity
-
B. L. Sturm, C. Kereliuk, and J. Larsen, "¿El Caballo Viejo? Latin genre recognition with deep learning and spectral periodicity," in Proc. Int. Conf. Math. Comput. Music, 2015, pp. 335-346.
-
(2015)
Proc. Int. Conf. Math. Comput. Music
, pp. 335-346
-
-
Sturm, B.L.1
Kereliuk, C.2
Larsen, J.3
-
14
-
-
84960877586
-
Deep learning, audio adversaries, and music content analysis
-
C. Kereliuk, B. L. Sturm, and J. Larsen, "Deep learning, audio adversaries, and music content analysis," in Proc. WASPAA, 2015, pp. 1-10.
-
(2015)
Proc. WASPAA
, pp. 1-10
-
-
Kereliuk, C.1
Sturm, B.L.2
Larsen, J.3
-
15
-
-
85083951001
-
Explaining and harnessing adversarial examples
-
I. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples," in Proc. ICLR, 2015, pp. 1-11.
-
(2015)
Proc. ICLR
, pp. 1-11
-
-
Goodfellow, I.J.1
Shlens, J.2
Szegedy, C.3
-
16
-
-
84946232916
-
Towards deep neural network architectures robust to adversarial examples
-
Dec. [Online]
-
S. Gu and L. Rigazio, "Towards deep neural network architectures robust to adversarial examples," CoRR, Dec. 2014 [Online]. Available: http://arxiv.org/abs/1412.5068
-
(2014)
CoRR
-
-
Gu, S.1
Rigazio, L.2
-
17
-
-
64649105397
-
Content-based music information retrieval: Current directions and future challenges
-
Apr
-
M. Casey et al., "Content-based music information retrieval: Current directions and future challenges," Proc. IEEE, vol. 96, no. 4, pp. 668-696, Apr. 2008.
-
(2008)
Proc. IEEE
, vol.96
, Issue.4
, pp. 668-696
-
-
Casey, M.1
-
18
-
-
11144341364
-
An industrial strength audio search algorithm
-
Oct
-
A. Wang, "An industrial strength audio search algorithm," in Proc. Int. Soc. Music Info. Retrieval, Oct. 2003, pp. 1-7.
-
(2003)
Proc. Int. Soc. Music Info. Retrieval
, pp. 1-7
-
-
Wang, A.1
-
19
-
-
66149148286
-
Analysis of minimum distances in high-dimensional musical spaces
-
Jul
-
M. Casey, C. Rhodes, and M. Slaney, "Analysis of minimum distances in high-dimensional musical spaces," IEEE Trans. Audio, Speech, Lang. Process., vol. 16, no. 5, pp. 1015-1028, Jul. 2008.
-
(2008)
IEEE Trans. Audio, Speech, Lang. Process
, vol.16
, Issue.5
, pp. 1015-1028
-
-
Casey, M.1
Rhodes, C.2
Slaney, M.3
-
20
-
-
85032751380
-
Score-informed source separation for musical audio recordings: An overview
-
May
-
S. Ewert, B. Pardo, M. Muller, and M. Plumbley, "Score-informed source separation for musical audio recordings: An overview," IEEE Signal Process. Mag., vol. 31, no. 3, pp. 116-124, May 2014.
-
(2014)
IEEE Signal Process. Mag
, vol.31
, Issue.3
, pp. 116-124
-
-
Ewert, S.1
Pardo, B.2
Muller, M.3
Plumbley, M.4
-
22
-
-
80051647410
-
Automatic tagging of audio: The state-of-the-art
-
W. Wang, Ed. Hershey, PA, USA: IGI Global
-
T. Bertin-Mahieux, D. Eck, and M. Mandel, "Automatic tagging of audio: The state-of-the-art," in Machine Audition: Principles, Algorithms and Systems, W. Wang, Ed. Hershey, PA, USA: IGI Global, 2010.
-
(2010)
Machine Audition: Principles, Algorithms and Systems
-
-
Bertin-Mahieux, T.1
Eck, D.2
Mandel, M.3
-
24
-
-
79955393344
-
Computational analysis of musical influence: A musicological case study using MIR tools
-
N. Collins, "Computational analysis of musical influence: A musicological case study using mir tools," in Proc. ISMIR, 2010, pp. 177-182.
-
(2010)
Proc. ISMIR
, pp. 177-182
-
-
Collins, N.1
-
25
-
-
33745088642
-
Concatenative sound synthesis: The early years
-
Mar
-
D. Schwarz, "Concatenative sound synthesis: The early years," J. New Music Res., vol. 35, no. 1, pp. 3-22, Mar. 2006.
-
(2006)
J. New Music Res
, vol.35
, Issue.1
, pp. 3-22
-
-
Schwarz, D.1
-
28
-
-
84897544737
-
Theano: New features and speed improvements
-
NIPS 2012Workshop
-
F. Bastien et al., "Theano: New features and speed improvements," in Proc. Deep Learn. Unsupervised Feature Learn. NIPS 2012Workshop, 2012, pp. 1-10.
-
(2012)
Proc. Deep Learn. Unsupervised Feature Learn
, pp. 1-10
-
-
Bastien, F.1
-
29
-
-
84857819132
-
Theano: A CPU and GPU math expression compiler
-
presented at, Austin, TX, USA, Jun
-
J. Bergstra et al., "Theano: A CPU and GPU math expression compiler," presented at the Python Sci. Comput. Conf., Austin, TX, USA, Jun. 2010.
-
(2010)
The Python Sci. Comput. Conf
-
-
Bergstra, J.1
-
30
-
-
0004135065
-
-
(LNCS 7700). New York, NY, USA: Springer
-
G. Montavon, G. B. Orr, and K.-R. Müller, Neural Networks, Tricks of the Trade, Reloaded, ser. Lecture Notes Comput. Sci. (LNCS 7700). New York, NY, USA: Springer, 2012.
-
(2012)
Neural Networks, Tricks of the Trade, Reloaded, Ser. Lecture Notes Comput. Sci
-
-
Montavon, G.1
Orr, G.B.2
Müller, K.-R.3
-
31
-
-
79952408648
-
Automatic musical pattern feature extraction using convolutional neural network
-
T. L. Li, A. B. Chan, and A. H. Chun, "Automatic musical pattern feature extraction using convolutional neural network," in Proc. Int. Conf. Data Mining Appl., 2010, pp. 546-550.
-
(2010)
Proc. Int. Conf. Data Mining Appl
, pp. 546-550
-
-
Li, T.L.1
Chan, A.B.2
Chun, A.H.3
-
32
-
-
77949513751
-
Semantic gap Schemantic schmap!! Methodological considerations in the scientific study of music
-
Dec
-
G. A. Wiggins, "Semantic gap Schemantic schmap!! Methodological considerations in the scientific study of music," in Proc. IEEE Int. Symp. Mulitmedia, Dec. 2009, pp. 477-482.
-
(2009)
Proc. IEEE Int. Symp. Mulitmedia
, pp. 477-482
-
-
Wiggins, G.A.1
-
33
-
-
33745000971
-
Improving timbre similarity: How high is the sky?
-
J.-J. Aucouturier and F. Pachet, "Improving timbre similarity: How high is the sky?," J. Negative Results Speech Audio Sci., vol. 1, no. 1, pp. 1-13, 2004.
-
(2004)
J. Negative Results Speech Audio Sci
, vol.1
, Issue.1
, pp. 1-13
-
-
Aucouturier, J.-J.1
Pachet, F.2
-
34
-
-
84873545114
-
Improvements of audio-based music similarity and genre classification
-
Sep
-
E. Pampalk, A. Flexer, and G. Widmer, "Improvements of audio-based music similarity and genre classification," in Proc. Int. Soc.Music Info. Retrieval, Sep. 2005, pp. 628-233.
-
(2005)
Proc. Int. Soc.Music Info. Retrieval
, pp. 628-633
-
-
Pampalk, E.1
Flexer, A.2
Widmer, G.3
-
35
-
-
84873580369
-
A closer look on artist filters for musical genre classification
-
Sep
-
A. Flexer, "A closer look on artist filters for musical genre classification," in Proc. ISMIR, Sep. 2007, pp. 341-344.
-
(2007)
Proc. ISMIR
, pp. 341-344
-
-
Flexer, A.1
-
36
-
-
79960546359
-
Combining features reduces hubness in audio similarity
-
A. Flexer, D. Schnitzer, M. Gasser, and T. Pohle, "Combining features reduces hubness in audio similarity," in Proc. Int. Symp. Music Info. Retrieval, 2010, pp. 171-176.
-
(2010)
Proc. Int. Symp. Music Info. Retrieval
, pp. 171-176
-
-
Flexer, A.1
Schnitzer, D.2
Gasser, M.3
Pohle, T.4
-
37
-
-
84888353738
-
Classification accuracy is not enough: On the evaluation of music genre recognition systems
-
B. L. Sturm, "Classification accuracy is not enough: On the evaluation of music genre recognition systems," J. Intell. Inf. Syst., vol. 41, no. 3, pp. 371-406, 2013.
-
(2013)
J. Intell. Inf. Syst
, vol.41
, Issue.3
, pp. 371-406
-
-
Sturm, B.L.1
-
38
-
-
84888328116
-
Evaluation in music information retrieval
-
Dec
-
J. Urbano, M. Schedl, and X. Serra, "Evaluation in music information retrieval," J. Intell. Inf. Syst., vol. 41, no. 3, pp. 345-369, Dec. 2013.
-
(2013)
J. Intell. Inf. Syst
, vol.41
, Issue.3
, pp. 345-369
-
-
Urbano, J.1
Schedl, M.2
Serra, X.3
-
39
-
-
84946196669
-
"horse" inside: Seeking causes of the behaviours of music content analysis systems
-
accepted for publication
-
B. L. Sturm, ""Horse" inside: Seeking causes of the behaviours of music content analysis systems," in Proc. ACM Comput. Entertainment, accepted for publication.
-
Proc. ACM Comput. Entertainment
-
-
Sturm, B.L.1
-
40
-
-
84904663146
-
A closer look at deep learning neural networks with low-level spectral periodicity features
-
B. L. Sturm, C. Kereliuk, and A. Pikrakis, "A closer look at deep learning neural networks with low-level spectral periodicity features," in Proc. Int. Workshop Cognitive Inf. Process, 2014, pp. 1-6.
-
(2014)
Proc. Int. Workshop Cognitive Inf. Process
, pp. 1-6
-
-
Sturm, B.L.1
Kereliuk, C.2
Pikrakis, A.3
-
41
-
-
84946206172
-
Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
-
A. Nguyen, J. Yosinski, and J. Clune, "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images," in Proc. CVPR, 2015, pp. 427-436.
-
(2015)
Proc. CVPR
, pp. 427-436
-
-
Nguyen, A.1
Yosinski, J.2
Clune, J.3
-
42
-
-
12244295760
-
Adversarial classification
-
N. Dalvi, P. Domingos, S. Mausam, Sanghai, and D. Verma, "Adversarial classification," in Proc. KDD, 2004, pp. 99-108.
-
(2004)
Proc. KDD
, pp. 99-108
-
-
Dalvi, N.1
Domingos, P.2
Mausam Sanghai, S.3
Verma, D.4
-
44
-
-
0038444621
-
Distortion discriminant analysis for audio fingerprinting
-
May
-
C. J. C. Burges, J. C. Platt, and S. Jana, "Distortion discriminant analysis for audio fingerprinting," IEEE Trans. Speech Audio Process., vol. 11, no. 3, pp. 165-174, May 2003.
-
(2003)
IEEE Trans. Speech Audio Process
, vol.11
, Issue.3
, pp. 165-174
-
-
Burges, C.J.C.1
Platt, J.C.2
Jana, S.3
-
46
-
-
84885332879
-
Predicting emotion from music audio features using neural networks
-
N. Vempala and F. Russo, "Predicting emotion from music audio features using neural networks," in Proc. CMMR, 2012, pp. 336-343.
-
(2012)
Proc. CMMR
, pp. 336-343
-
-
Vempala, N.1
Russo, F.2
-
47
-
-
0035783543
-
Artist detection in music with Minnowmatch
-
Sep
-
B. Whitman, G. Flake, and S. Lawrence, "Artist detection in music with Minnowmatch," in Proc. IEEE Workshop Neural Netw. Signal Process., Sep. 2001, pp. 559-568.
-
(2001)
Proc. IEEE Workshop Neural Netw. Signal Process
, pp. 559-568
-
-
Whitman, B.1
Flake, G.2
Lawrence, S.3
-
48
-
-
0037825875
-
AI methods for algorithmic composition: A survey, a critical view and future prospects
-
G. Papadopoulos and G. Wiggins, "AI methods for algorithmic composition: A survey, a critical view and future prospects," in Proc. AISB Symp. Musical Creativity, 1999, pp. 110-117.
-
(1999)
Proc. AISB Symp. Musical Creativity
, pp. 110-117
-
-
Papadopoulos, G.1
Wiggins, G.2
-
49
-
-
0036648502
-
Musical genre classification of audio signals
-
Jul
-
G. Tzanetakis and P. Cook, "Musical genre classification of audio signals," IEEE Trans. Speech Audio Process., vol. 10, no. 5, pp. 293-302, Jul. 2002.
-
(2002)
IEEE Trans. Speech Audio Process
, vol.10
, Issue.5
, pp. 293-302
-
-
Tzanetakis, G.1
Cook, P.2
-
50
-
-
84873602768
-
Audio-based music classification with a pretrained convolutional network
-
S. Dieleman, P. Brakel, and B. Schrauwen, "Audio-based music classification with a pretrained convolutional network," in Proc. ISMIR, 2011, pp. 669-674.
-
(2011)
Proc. ISMIR
, pp. 669-674
-
-
Dieleman, S.1
Brakel, P.2
Schrauwen, B.3
-
51
-
-
84873597375
-
The million song dataset
-
T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, "The million song dataset," in Proc. ISMIR, 2011, pp. 591-596.
-
(2011)
Proc. ISMIR
, pp. 591-596
-
-
Bertin-Mahieux, T.1
Ellis, D.P.2
Whitman, B.3
Lamere, P.4
-
52
-
-
84905226811
-
On-line continuous-time music mood regression with deep recurrent neural networks
-
May
-
F. Weninger, F. Eyben, and B. Schuller, "On-line continuous-time music mood regression with deep recurrent neural networks," in Proc. ICASSP, May 2014, pp. 5412-5416.
-
(2014)
Proc. ICASSP
, pp. 5412-5416
-
-
Weninger, F.1
Eyben, F.2
Schuller, B.3
-
53
-
-
84873426072
-
Analyzing drum patterns using conditional deep belief networks
-
E. Battenberg and D. Wessel, "Analyzing drum patterns using conditional deep belief networks," in Proc. ISMIR, 2012, pp. 37-42.
-
(2012)
Proc. ISMIR
, pp. 37-42
-
-
Battenberg, E.1
Wessel, D.2
-
54
-
-
85054275611
-
Audio chord recognition with recurrent neural networks
-
N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, "Audio chord recognition with recurrent neural networks," in Proc. ISMIR, 2013, pp. 335-340.
-
(2013)
Proc. ISMIR
, pp. 335-340
-
-
Boulanger-Lewandowski, N.1
Bengio, Y.2
Vincent, P.3
-
55
-
-
84905252109
-
From music audio to chord tablature: Teaching deep convolutional networks toplay guitar
-
May
-
E. Humphrey and J. Bello, "From music audio to chord tablature: Teaching deep convolutional networks toplay guitar," in Proc. ICASSP, May 2014, pp. 6974-6978.
-
(2014)
Proc. ICASSP
, pp. 6974-6978
-
-
Humphrey, E.1
Bello, J.2
-
56
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
-
(2009)
Found. Trends Mach. Learn
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
57
-
-
62949101023
-
The Latin music database
-
C. N. Silla, A. L. Koerich, and C. A. A. Kaestner, "The Latin music database," in Proc. ISMIR, 2008, pp. 451-456.
-
(2008)
Proc. ISMIR
, pp. 451-456
-
-
Silla, C.N.1
Koerich, A.L.2
Kaestner, C.A.A.3
-
58
-
-
84921341377
-
A survey of evaluation in music genre recognition
-
A. Nürnberger, S. Stober, B. Larsen, and M. Detyniecki, Eds. Zug, Switzerland: Springer, Oct., LNCS 8382
-
B. L. Sturm, "A survey of evaluation in music genre recognition," in Adaptive Multimedia Retrieval: Semantics, Context, and Adaptation, A. Nürnberger, S. Stober, B. Larsen, and M. Detyniecki, Eds. Zug, Switzerland: Springer, Oct. 2014, vol. LNCS 8382, pp. 29-66.
-
(2014)
Adaptive Multimedia Retrieval: Semantics, Context, and Adaptation
, pp. 29-66
-
-
Sturm, B.L.1
-
59
-
-
0017552006
-
A unified approach to short-time Fourier analysis and synthesis
-
Nov
-
J. B. Allen and L. Rabiner, "A unified approach to short-time Fourier analysis and synthesis," Proc. IEEE, vol. 65, no. 11, pp. 1558-1564, Nov. 1977.
-
(1977)
Proc. IEEE
, vol.65
, Issue.11
, pp. 1558-1564
-
-
Allen, J.B.1
Rabiner, L.2
-
60
-
-
0003684449
-
-
2nd ed. Berlin, Germany: Springer-Verlag
-
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Berlin, Germany: Springer-Verlag, 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
61
-
-
0021407831
-
Signal estimation from modified short-time Fourier transform
-
Apr
-
D. Griffin and J. S. Lim, "Signal estimation from modified short-time Fourier transform," IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-32, no. 2, pp. 236-243, Apr. 1984.
-
(1984)
IEEE Trans. Acoust., Speech, Signal Process
, vol.ASSP-32
, Issue.2
, pp. 236-243
-
-
Griffin, D.1
Lim, J.S.2
-
62
-
-
84864122549
-
Unsupervised learning of sparse features for scalable audio classification
-
Oct
-
M. Henaff, K. Jarrett, K. Kavukcuoglu, and Y. LeCun, "Unsupervised learning of sparse features for scalable audio classification," in Proc. Int. Soc. Music Inf. Retrieval, Oct. 2011, pp. 681-686.
-
(2011)
Proc. Int. Soc. Music Inf. Retrieval
, pp. 681-686
-
-
Henaff, M.1
Jarrett, K.2
Kavukcuoglu, K.3
LeCun, Y.4
-
63
-
-
84870497334
-
An analysis of the GTZAN music genre dataset
-
Nov
-
B. L. Sturm, "An analysis of the GTZAN music genre dataset," in Proc. ACM MIRUM Workshop, Nov. 2012, pp. 7-12.
-
(2012)
Proc. ACM MIRUM Workshop
, pp. 7-12
-
-
Sturm, B.L.1
-
64
-
-
84888379546
-
The neglected user in music information retrieval research
-
M. Schedl, A. Flexer, and J. Urbano, "The neglected user in music information retrieval research," J. Intell. Inf. Syst., vol. 41, no. 3, pp. 523-539, 2013.
-
(2013)
J. Intell. Inf. Syst
, vol.41
, Issue.3
, pp. 523-539
-
-
Schedl, M.1
Flexer, A.2
Urbano, J.3
-
65
-
-
33846278174
-
Towards characterisation of music via rhythmic patterns
-
S. Dixon, F. Gouyon, and G. Widmer, "Towards characterisation of music via rhythmic patterns," in Proc. ISMIR, 2004, pp. 509-517.
-
(2004)
Proc. ISMIR
, pp. 509-517
-
-
Dixon, S.1
Gouyon, F.2
Widmer, G.3
|