-
2
-
-
84905248193
-
End-to-end learning for music audio
-
S. Dieleman and B. Schrauwen, "End-to-end learning for music audio," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2014, pp. 6964-6968.
-
(2014)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process
, pp. 6964-6968
-
-
Dieleman, S.1
Schrauwen, B.2
-
3
-
-
84873584268
-
Learning features from music audio with deep belief networks
-
P. Hamel and D. Eck, "Learning features from music audio with deep belief networks." in Proc. Int. Soc. Music Info. Retrieval, 2010, pp. 339-344.
-
(2010)
Proc. Int. Soc. Music Info. Retrieval
, pp. 339-344
-
-
Hamel, P.1
Eck, D.2
-
4
-
-
84905259152
-
Improved music feature learning with deep neural networks
-
May
-
S. Sigtia and S. Dixon, "Improved music feature learning with deep neural networks," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., May 2014, pp. 6959-6963.
-
(2014)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process
, pp. 6959-6963
-
-
Sigtia, S.1
Dixon, S.2
-
5
-
-
84905251531
-
Improved musical onset detection with convolutional neural networks
-
J. Schlüter and S. Böck, "Improved Musical Onset Detection with Convolutional Neural Networks," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2014, pp. 6979-6983.
-
(2014)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process
, pp. 6979-6983
-
-
Schlüter, J.1
Böck, S.2
-
6
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.1
Osindero, S.2
Teh, Y.-W.3
-
7
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Proc. Advances in neural information processing systems, 2012, pp. 1097-1105.
-
(2012)
Proc. Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
8
-
-
84888315556
-
Feature learning and deep architectures: New directions for music informatics
-
E. J. Humphrey, J. P. Bello, and Y. LeCun, "Feature learning and deep architectures: New directions for music informatics," J. Intell. Info. Systems, vol. 41, no. 3, pp. 461-481, 2013.
-
(2013)
J. Intell. Info. Systems
, vol.41
, Issue.3
, pp. 461-481
-
-
Humphrey, E.J.1
Bello, J.P.2
LeCun, Y.3
-
9
-
-
64649105397
-
Content-based music information retrieval: Current directions and future challenges
-
Apr
-
M. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney, "Content-based music information retrieval: Current directions and future challenges," Proc. IEEE, vol. 96, no. 4, pp. 668-696, Apr. 2008.
-
(2008)
Proc. IEEE
, vol.96
, Issue.4
, pp. 668-696
-
-
Casey, M.1
Veltkamp, R.2
Goto, M.3
Leman, M.4
Rhodes, C.5
Slaney, M.6
-
10
-
-
79955587289
-
Web-scale multimedia analysis: Does content matter
-
Feb
-
M. Slaney, "Web-scale multimedia analysis: Does content matter?" IEEE Multimedia, vol. 18, no. 2, pp. 12-15, Feb. 2011.
-
(2011)
IEEE Multimedia
, vol.18
, Issue.2
, pp. 12-15
-
-
Slaney, M.1
-
13
-
-
85083953343
-
Intriguing properties of neural networks
-
C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, "Intriguing properties of neural networks," in Proc. Int. Conf. Learning Representations, 2014. [Online]. Available: http://arxiv.org/abs/1312.6199
-
(2014)
Proc. Int. Conf. Learning Representations
-
-
Szegedy, C.1
Zaremba, W.2
Sutskever, I.3
Bruna, J.4
Erhan, D.5
Goodfellow, I.6
Fergus, R.7
-
14
-
-
84952053267
-
Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
-
A. Nguyen, J. Yosinski, and J. Clune, "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images," CoRR, vol. abs/1412.1897, 2014. [Online]. Available: http://arxiv.org/abs/1412.1897
-
(2014)
CoRR abs/1412.1897
-
-
Nguyen, A.1
Yosinski, J.2
Clune, J.3
-
15
-
-
84888353738
-
Classification accuracy is not enough
-
B. L. Sturm, "Classification accuracy is not enough," J. Intell. Info. Systems, vol. 41, no. 3, pp. 371-406, 2013.
-
(2013)
J. Intell. Info. Systems
, vol.41
, Issue.3
, pp. 371-406
-
-
Sturm, B.L.1
-
16
-
-
84902659726
-
The state of the art ten years after a state of the art: Future research in music information retrieval
-
B. Sturm, "The state of the art ten years after a state of the art: Future research in music information retrieval," Journal of New Music Research, vol. 43, no. 2, pp. 147-172, 2014.
-
(2014)
Journal of New Music Research
, vol.43
, Issue.2
, pp. 147-172
-
-
Sturm, B.1
-
17
-
-
84907449171
-
A simple method to determine if a music information retrieval system is a "horse
-
Oct
-
-, "A simple method to determine if a music information retrieval system is a "horse"," IEEE Trans. Multimedia, vol. 16, no. 6, pp. 1636-1644, Oct 2014.
-
(2014)
IEEE Trans. Multimedia
, vol.16
, Issue.6
, pp. 1636-1644
-
-
Sturm, B.1
-
18
-
-
0036472946
-
A theoretical study on six classifier fusion strategies
-
Feb
-
L. Kuncheva, "A theoretical study on six classifier fusion strategies," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, no. 2, pp. 281-286, Feb 2002.
-
(2002)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.24
, Issue.2
, pp. 281-286
-
-
Kuncheva, L.1
-
19
-
-
0021407831
-
Signal estimation from modified short-time fourier transform
-
D. Griffin and J. S. Lim, "Signal estimation from modified short-time fourier transform," IEEE Trans. Acoustics, Speech, Signal Process., vol. 32, no. 2, pp. 236-243, 1984.
-
(1984)
IEEE Trans. Acoustics, Speech, Signal Process
, vol.32
, Issue.2
, pp. 236-243
-
-
Griffin, D.1
Lim, J.S.2
-
20
-
-
0036648502
-
Musical genre classification of audio signals
-
July
-
G. Tzanetakis and P. Cook, "Musical genre classification of audio signals," IEEE Trans. Speech, Audio, Signal Process., vol. 10, no. 5, pp. 293-302, July 2002.
-
(2002)
IEEE Trans. Speech, Audio, Signal Process
, vol.10
, Issue.5
, pp. 293-302
-
-
Tzanetakis, G.1
Cook, P.2
-
21
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," J. Machine Learning Res., vol. 15, no. 1, pp. 1929-1958, 2014.
-
(2014)
J. Machine Learning Res
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
24
-
-
27844508054
-
A perceptual model for sinusoidal audio coding based on spectral integration
-
S. van de Par, A. Kohlrausch, R. Heusdens, J. Jensen, and S. H. Jensen, "A perceptual model for sinusoidal audio coding based on spectral integration," EURASIP J. Applied Signal Process., no. 9, pp. 1292-13 042, 2005.
-
(2005)
EURASIP J. Applied Signal Process
, Issue.9
, pp. 1292-13042
-
-
Van De, P.S.1
Kohlrausch, A.2
Heusdens, R.3
Jensen, J.4
Jensen, S.H.5
-
26
-
-
84873597375
-
The million song dataset
-
T. Bertin-Mahieux, D. Ellis, B. Whitman, and P. Lamere, "The million song dataset," in Proc. Int. Soc. Music Info. Retrieval, 2011.
-
(2011)
Proc. Int. Soc. Music Info. Retrieval
-
-
Bertin-Mahieux, T.1
Ellis, D.2
Whitman, B.3
Lamere, P.4
|