메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 4305-4309

Differentiable pooling for unsupervised speaker adaptation

Author keywords

Deep Neural Networks; Differentiable pooling; LHUC; Speaker Adaptation; TED

Indexed keywords

DEEP NEURAL NETWORKS; SPEECH COMMUNICATION; SPEECH PROCESSING; SPEECH RECOGNITION;

EID: 84946032695     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2015.7178783     Document Type: Conference Paper
Times cited : (34)

References (41)
  • 5
    • 84937880519 scopus 로고
    • Connectionist speaker normalization and adaptation
    • V Abrash, H Franco, A Sankar, and M Cohen, "Connectionist speaker normalization and adaptation" in Proc Eurospeech, 1995, pp. 21832186
    • (1995) Proc Eurospeech , pp. 2183-2186
    • Abrash, V.1    Franco, H.2    Sankar, A.3    Cohen, M.4
  • 6
    • 84858976070 scopus 로고    scopus 로고
    • Feature engineering in context-dependent deep neural networks for conversational speech transcription
    • F Seide, X Chen, and D Yu, "Feature engineering in context-dependent deep neural networks for conversational speech transcription" in Proc IEEE ASRU, 2011
    • (2011) Proc IEEE ASRU
    • Seide, F.1    Chen, X.2    Yu, D.3
  • 7
  • 8
    • 84890542079 scopus 로고    scopus 로고
    • KL-divergence regularized deep neural network adaptation for improved large vocabulary speech recognition
    • D Yu, K Yao, H Su, G Li, and F Seide, "KL-divergence regularized deep neural network adaptation for improved large vocabulary speech recognition." in Proc IEEE ICASSP, 2013, pp. 7893-7897
    • (2013) Proc IEEE ICASSP , pp. 7893-7897
    • Yu, D.1    Yao, K.2    Su, H.3    Li, G.4    Seide, F.5
  • 9
    • 84890521103 scopus 로고    scopus 로고
    • Speaker adaptation of context dependent deep neural networks
    • IEEE
    • H Liao, "Speaker adaptation of context dependent deep neural networks." in In Proc. ICASSP. 2013, pp. 7947-7951, IEEE
    • (2013) Proc. ICASSP , pp. 7947-7951
    • Liao, H.1
  • 10
    • 0032050110 scopus 로고    scopus 로고
    • Maximum likelihood linear transformations for HMM-based speech recognition
    • April
    • MJF Gales, "Maximum likelihood linear transformations for HMM-based speech recognition" Computer Speech and Language, vol. 12, pp. 75-98, April 1998
    • (1998) Computer Speech and Language , vol.12 , pp. 75-98
    • Gales, M.J.F.1
  • 11
    • 84890537527 scopus 로고    scopus 로고
    • Multi-level adaptive networks in tandem and hybrid ASR systems
    • P Bell, P Swietojanski, and S Renals, "Multi-level adaptive networks in tandem and hybrid ASR systems" in Proc IEEE ICASSP, 2013
    • (2013) Proc IEEE ICASSP
    • Bell, P.1    Swietojanski, P.2    Renals, S.3
  • 13
    • 84893691530 scopus 로고    scopus 로고
    • Speaker adaptation of neural network acoustic models using i-vectors
    • G Saon, H Soltau, D Nahamoo, and M Picheny, "Speaker adaptation of neural network acoustic models using i-vectors." in Proc IEEE ASRU, 2013, pp. 55-59
    • (2013) Proc IEEE ASRU , pp. 55-59
    • Saon, G.1    Soltau, H.2    Nahamoo, D.3    Picheny, M.4
  • 14
    • 84874226579 scopus 로고    scopus 로고
    • Adaptation of context-dependent deep neural networks for automatic speech recognition
    • K Yao, D Yu, F Seide, H Su, L Deng, and Y Gong, "Adaptation of context-dependent deep neural networks for automatic speech recognition." in Proc IEEE SLT, 2012
    • (2012) Proc IEEE SLT
    • Yao, K.1    Yu, D.2    Seide, F.3    Su, H.4    Deng, L.5    Gong, Y.6
  • 15
    • 84881054791 scopus 로고    scopus 로고
    • Hermitian polynomial for speaker adaptation of connectionist speech recognition systems
    • SM Siniscalchi, J Li, and CH Lee, "Hermitian polynomial for speaker adaptation of connectionist speech recognition systems" IEEE Trans Audio, Speech,and Language Processing, vol. 21, pp. 2152-2161, 2013
    • (2013) IEEE Trans Audio, Speech, and Language Processing , vol.21 , pp. 2152-2161
    • Siniscalchi, S.M.1    Li, J.2    Lee, C.3
  • 16
    • 84910030053 scopus 로고
    • Recnorm: Simultaneous normalisation and classification applied to speech recognition
    • JS Bridle and S Cox, "Recnorm: Simultaneous normalisation and classification applied to speech recognition" in Advances in Neural Information Processing Systems 3, 1990, pp. 234-240
    • (1990) Advances in Neural Information Processing Systems , vol.3 , pp. 234-240
    • Bridle, J.S.1    Cox, S.2
  • 17
    • 84890452886 scopus 로고    scopus 로고
    • Fast speaker adaptation of hybrid NN/HMM model for speech recognition based on discriminative learning of speaker code
    • O Abdel-Hamid and H Jiang, "Fast speaker adaptation of hybrid NN/HMM model for speech recognition based on discriminative learning of speaker code" in Proc IEEE ICASSP, 2013, pp. 4277-4280
    • (2013) Proc IEEE ICASSP , pp. 4277-4280
    • Abdel-Hamid, O.1    Jiang, H.2
  • 18
    • 84905229915 scopus 로고    scopus 로고
    • Singular value decomposition based low-footprint speaker adaptation and personalization for deep neural network
    • J Xue, J Li, D Yu, M Seltzer, and Y Gong, "Singular value decomposition based low-footprint speaker adaptation and personalization for deep neural network" in Proc IEEE ICASSP, 2014
    • (2014) Proc IEEE ICASSP
    • Xue, J.1    Li, J.2    Yu, D.3    Seltzer, M.4    Gong, Y.5
  • 19
    • 84906225505 scopus 로고    scopus 로고
    • Rapid and effective speaker adaptation of convolutional neural network based models for speech recognition
    • ISCA
    • O Abdel-Hamid and H Jiang, "Rapid and effective speaker adaptation of convolutional neural network based models for speech recognition." in Proc. Interspeech. pp. 1248-1252, ISCA
    • Proc. Interspeech , pp. 1248-1252
    • Abdel-Hamid, O.1    Jiang, H.2
  • 20
    • 84983119674 scopus 로고    scopus 로고
    • Learning hidden unit contributions for unsupervised speaker adaptation of neural network acoustic models
    • P Swietojanski and S Renals, "Learning hidden unit contributions for unsupervised speaker adaptation of neural network acoustic models" in Proc. IEEE SLT, 2014
    • (2014) Proc. IEEE SLT
    • Swietojanski, P.1    Renals, S.2
  • 21
    • 0020331278 scopus 로고
    • Neocognitron: A new algoriothm for pattern recognition tolerant of deformations
    • K Fukushima and S Miyake, "Neocognitron: A new algoriothm for pattern recognition tolerant of deformations" Pattern Recognition, vol. 15, pp. 455-69, 1982
    • (1982) Pattern Recognition , vol.15 , pp. 455-469
    • Fukushima, K.1    Miyake, S.2
  • 23
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y LeCun, L Bottou, Y Bengio, and P Haffner, "Gradient-based learning applied to document recognition" Proceedings of the IEEE, vol. 86, pp. 2278-2324, 1998
    • (1998) Proceedings of the IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 24
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • M Riesenhuber and T Poggio, "Hierarchical models of object recognition in cortex" Nature Neuroscience, vol. 2, pp. 1019-1025, 1999
    • (1999) Nature Neuroscience , vol.2 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 25
    • 51249118803 scopus 로고    scopus 로고
    • Unsuper-vised learning of invariant feature hierarchies with applications to object recognition
    • MA Ranzato, FJ Huang, Y-L Boureau, and Y LeCun, "Unsuper-vised learning of invariant feature hierarchies with applications to object recognition" in IEEE CVPR, 2007
    • (2007) IEEE CVPR
    • Ranzato, M.1    Huang, F.J.2    Boureau, Y.-L.3    LeCun, Y.4
  • 26
    • 77956502203 scopus 로고    scopus 로고
    • A theoretical analysis of feature pooling in visual recognition
    • Y-L Boureau, J Ponce, and Y LeCun, "A theoretical analysis of feature pooling in visual recognition" in Proc ICML, 2010
    • (2010) Proc ICML
    • Boureau, Y.-L.1    Ponce, J.2    LeCun, Y.3
  • 28
    • 84893701756 scopus 로고    scopus 로고
    • Deep maxout networks for low-resource speech recognition
    • Y. Miao, F. Metze, and S. Rawat, "Deep maxout networks for low-resource speech recognition" in Proc. IEEE ASRU, 2013
    • (2013) Proc. IEEE ASRU
    • Miao, Y.1    Metze, F.2    Rawat, S.3
  • 29
    • 84893651518 scopus 로고    scopus 로고
    • Deep maxout neural networks for speech recognition
    • Dec
    • M. Cai, Y. Shi, and J. Liu, "Deep maxout neural networks for speech recognition" in Proc. ASRU, Dec 2013, pp. 291-296
    • (2013) Proc. ASRU , pp. 291-296
    • Cai, M.1    Shi, Y.2    Liu, J.3
  • 31
    • 84904512262 scopus 로고    scopus 로고
    • Neural networks for distant speech recognition
    • S Renals and P Swietojanski, "Neural networks for distant speech recognition" in Proc HSCMA, 2014
    • (2014) Proc HSCMA
    • Renals, S.1    Swietojanski, P.2
  • 32
    • 84910069623 scopus 로고    scopus 로고
    • Convolutional deep maxout networks for phone recognition
    • L Toth, "Convolutional deep maxout networks for phone recognition" in Proc Interspeech, 2014
    • (2014) Proc Interspeech
    • Toth, L.1
  • 33
    • 84946063012 scopus 로고    scopus 로고
    • Differentiable pooling for hierarchical feature learning
    • abs/1207.0151
    • M D Zeiler and R Fergus, "Differentiable pooling for hierarchical feature learning" CoRR, vol. abs/1207.0151, 2012
    • (2012) CoRR
    • Zeiler, M.D.1    Fergus, R.2
  • 34
    • 84874575248 scopus 로고    scopus 로고
    • Convolutional neural networks applied to house numbers digit classification
    • abs/1204.3968
    • P Sermanet, S Chintala, and Y LeCun, "Convolutional neural networks applied to house numbers digit classification" CoRR, vol. abs/1204.3968, 2012
    • (2012) CoRR
    • Sermanet, P.1    Chintala, S.2    LeCun, Y.3
  • 36
    • 84905239342 scopus 로고    scopus 로고
    • Improving deep neural network acoustic models using generalized maxout networks
    • X Zhang, J Trmal, D Povey, and S Khudanpur, "Improving deep neural network acoustic models using generalized maxout networks" in ICASSP,2014
    • (2014) ICASSP
    • Zhang, X.1    Trmal, J.2    Povey, D.3    Khudanpur, S.4
  • 37
    • 84946095296 scopus 로고    scopus 로고
    • Learned-norm pooling for deep neural networks
    • abs/1311.1780
    • Gulcehre K Cho, R Pascanu, and Y Bengio, "Learned-norm pooling for deep neural networks" CoRR, vol. abs/1311.1780, 2013
    • (2013) CoRR
    • Gulcehre Cho, K.1    Pascanu, R.2    Bengio, Y.3
  • 38
    • 0035024581 scopus 로고    scopus 로고
    • Networks with trainable amplitude of activation functions
    • E Trentin, "Networks with trainable amplitude of activation functions" Neural Networs, vol. 14, pp. 471-W3, 2001
    • (2001) Neural Networs , vol.14 , pp. 471-W3
    • Trentin, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.