-
1
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
November
-
G.E. Hinton, L. Deng, D. Yu, G.E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T.N. Sainath, and B. Kingsbury, "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, " IEEE Signal Processing Magazine, vol. 29, pp. 82-97, November 2012.
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, pp. 82-97
-
-
Hinton, G.E.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
Kingsbury, B.11
-
2
-
-
84055222005
-
Contextdependent pre-trained deep neural networks for large vocabulary speech recognition
-
January
-
G.E. Dahl, D. Yu, L. Deng, and A. Acero, "Contextdependent pre-trained deep neural networks for large vocabulary speech recognition, " IEEE Transactions on Audio, Speech and Language Processing, vol. 20, pp. 30-42, January 2012.
-
(2012)
IEEE Transactions on Audio, Speech and Language Processing
, vol.20
, pp. 30-42
-
-
Dahl, G.E.1
Yu, D.2
Deng, L.3
Acero, A.4
-
3
-
-
84867585919
-
Understanding how deep belief networks perform acoustic modeling
-
IEEE SPS
-
A. Mohamed, G. Hinton, and G. Penn, "Understanding how deep belief networks perform acoustic modeling, " in Proc. ICASSP. IEEE SPS, 2012, pp. 4273-4276.
-
(2012)
Proc. ICASSP
, pp. 4273-4276
-
-
Mohamed, A.1
Hinton, G.2
Penn, G.3
-
4
-
-
84874485803
-
Investigation of deep neural networks (DNN) for large vocabulary continuous speech recognition: Why dnn surpasses gmms in acoustic modeling
-
IEEE, 301-305
-
J. Pan, C. Liu, Z. Wang, Y. Hu, and H. Jiang, "Investigation of deep neural networks (DNN) for large vocabulary continuous speech recognition: Why DNN surpasses GMMs in acoustic modeling, " in Proc. ISCSLP. IEEE, 2012, pp. 301-305.
-
(2012)
Proc. ISCSLP
-
-
Pan, J.1
Liu, C.2
Wang, Z.3
Hu, Y.4
Jiang, H.5
-
5
-
-
84055211743
-
Acoustic modeling using deep belief networks
-
January
-
A. Mohamed, G.E. Dahl, and G.E. Hinton, "Acoustic modeling using deep belief networks, " IEEE Transactions on Audio, Speech and Language Processing, vol. 20, pp. 14-22, January 2012.
-
(2012)
IEEE Transactions on Audio, Speech and Language Processing
, vol.20
, pp. 14-22
-
-
Mohamed, A.1
Dahl, G.E.2
Hinton, G.E.3
-
6
-
-
84865801985
-
Conversational speech transcription using context-dependent deep neural networks
-
ISCA
-
F. Seide, G. Li, and D. Yu, "Conversational speech transcription using context-dependent deep neural networks, " in Proc. Interspeech. ISCA, 2011, pp. 437-440.
-
(2011)
Proc. Interspeech
, pp. 437-440
-
-
Seide, F.1
Li, G.2
Yu, D.3
-
7
-
-
84862294866
-
Deep sparse rectifier neural networks
-
X. Glorot, A. Bordes, and Y. Bengio, "Deep sparse rectifier neural networks, " in Proc. AISTATS, 2011, pp. 315- 323.
-
(2011)
Proc. AISTATS
, pp. 315-323
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
8
-
-
84890471125
-
On rectified linear units for speech processing
-
IEEE
-
M.D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q.V. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, and G.E. Hinton, "On rectified linear units for speech processing, " in Proc. ICASSP. IEEE, 2013, pp. 3517- 3521.
-
(2013)
Proc. ICASSP
, pp. 3517-3521
-
-
Zeiler, M.D.1
Ranzato, M.2
Monga, R.3
Mao, M.4
Yang, K.5
Le, Q.V.6
Nguyen, P.7
Senior, A.8
Vanhoucke, V.9
Dean, J.10
Hinton, G.E.11
-
9
-
-
84893676344
-
Rectifier nonlinearities improve neural network acoustic models
-
International Machine Learning Society
-
A. Maas, A. Hannun, and A. Ng, "Rectifier nonlinearities improve neural network acoustic models, " in Proc. ICML. International Machine Learning Society, 2013.
-
(2013)
Proc. ICML
-
-
Maas, A.1
Hannun, A.2
Ng, A.3
-
10
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
DOI 10.1162/neco.2006.18.7.1527
-
G.E. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets, " Neural Computation, vol. 18, no. 7, pp. 1527-1554, 2006. (Pubitemid 44024729)
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
11
-
-
84858976070
-
Feature engineering in context-dependent deep neural networks for conversational speech transcription
-
IEEE
-
F. Seide, G. Li, X. Chen, and D. Yu, "Feature engineering in context-dependent deep neural networks for conversational speech transcription, " in Proc. ASRU. IEEE, 2011, pp. 24-29.
-
(2011)
Proc. ASRU.
, pp. 24-29
-
-
Seide, F.1
Li, G.2
Chen, X.3
Yu, D.4
-
12
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
International Machine Learning Society
-
V. Nair and G. Hinton, "Rectified linear units improve restricted Boltzmann machines, " in Proc. ICML. International Machine Learning Society, 2010.
-
(2010)
Proc. ICML
-
-
Nair, V.1
Hinton, G.2
-
13
-
-
84897543523
-
Maxout networks
-
International Machine Learning Society
-
I. Goodfellow, D.Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, "Maxout networks, " in Proc. ICML. International Machine Learning Society, 2013.
-
(2013)
Proc. ICML
-
-
Goodfellow, I.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
14
-
-
84867720412
-
-
arXiv: 1207.0580
-
G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors, " arXiv: 1207.0580, 2012.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
15
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
November
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition, " Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, November 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
16
-
-
84889596187
-
Improving deep neural network acoustic models using unlabeled data
-
IEEE
-
M. Cai, W.Q. Zhang, and J. Liu, "Improving deep neural network acoustic models using unlabeled data, " in Proc. ChinaSIP. IEEE, 2013.
-
(2013)
Proc. ChinaSIP
-
-
Cai, M.1
Zhang, W.Q.2
Liu, J.3
-
18
-
-
84890448307
-
An evaluation of posterior modeling techniques for phonetic recogntion
-
IEEE
-
R. Prabhavalkar, T. Sainath, D. Nahamoo, B. Ramabhadran, and D. Kanevsky, "An evaluation of posterior modeling techniques for phonetic recogntion, " in Proc. ICASSP. IEEE, 2013, pp. 7165-7169.
-
(2013)
Proc. ICASSP
, pp. 7165-7169
-
-
Prabhavalkar, R.1
Sainath, T.2
Nahamoo, D.3
Ramabhadran, B.4
Kanevsky, D.5
|