메뉴 건너뛰기




Volumn , Issue , 2014, Pages 7649-7653

Investigation of maxout networks for speech recognition

Author keywords

deep neural networks; low resource speech recognition; maxout networks; multitask learning

Indexed keywords

KNOWLEDGE MANAGEMENT; SIGNAL PROCESSING;

EID: 84905270524     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2014.6855088     Document Type: Conference Paper
Times cited : (40)

References (33)
  • 5
    • 84858976070 scopus 로고    scopus 로고
    • Feature engineering in context-dependent deep neural networks for conversational speech transcription
    • F. Seide, G. Li, X. Chen, and D. Yu, "Feature engineering in context-dependent deep neural networks for conversational speech transcription, " in In Proc. IEEE ASRU, 2011, pp. 24-29.
    • (2011) Proc. IEEE ASRU , pp. 24-29
    • Seide, F.1    Li, G.2    Chen, X.3    Yu, D.4
  • 6
    • 84878379108 scopus 로고    scopus 로고
    • Scalable minimum Bayes risk training of deep neural network acoustic models using distributed Hessian-free optimization
    • B. Kingsbury, T. N. Sainath, and H. Soltau, "Scalable minimum Bayes risk training of deep neural network acoustic models using distributed Hessian-free optimization, " in Proc. Interspeech, 2012.
    • (2012) Proc. Interspeech
    • Kingsbury, B.1    Sainath, T.N.2    Soltau, H.3
  • 7
    • 84878539964 scopus 로고    scopus 로고
    • Application of pretrained deep neural networks to large vocabulary speech recognition
    • N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, "Application of pretrained deep neural networks to large vocabulary speech recognition, " in Proc. Interspeech, 2012.
    • (2012) Proc. Interspeech
    • Jaitly, N.1    Nguyen, P.2    Senior, A.3    Vanhoucke, V.4
  • 8
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
    • G. E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition, " IEEE Transactions on Audio, Speech and Language Processing, vol. 20, no. 1, pp. 30-42, 2012.
    • (2012) IEEE Transactions on Audio, Speech and Language Processing , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 9
    • 84890492030 scopus 로고    scopus 로고
    • An investigation of deep neural networks for noise robust speech recognition
    • M. Seltzer, D. Yu, and Y. Wang, "An investigation of deep neural networks for noise robust speech recognition, " in In Proc. ICASSP, 2013.
    • (2013) Proc. ICASSP
    • Seltzer, M.1    Yu, D.2    Wang, Y.3
  • 10
    • 84890527497 scopus 로고    scopus 로고
    • Crosslanguage knowledge transfer using multilingual deep neural network with shared hidden layers
    • J-T Huang, J. Li, D. Yu, L. Deng, and Y. Gong, "Crosslanguage knowledge transfer using multilingual deep neural network with shared hidden layers, " in Proc. ICASSP, 2013.
    • (2013) Proc. ICASSP
    • Huang, J.-T.1    Li, J.2    Yu, D.3    Deng, L.4    Gong, Y.5
  • 11
    • 84874278045 scopus 로고    scopus 로고
    • Unsupervised cross-lingual knowledge transfer in DNN-based LVCSR
    • Miami
    • P. Swietojanski, A. Ghoshal, and S. Renals, "Unsupervised cross-lingual knowledge transfer in DNN-based LVCSR, " in In Proc. IEEE SLT, Miami, 2012.
    • (2012) Proc. IEEE SLT
    • Swietojanski, P.1    Ghoshal, A.2    Renals, S.3
  • 14
    • 84906273501 scopus 로고    scopus 로고
    • Improving low-resource CD-DNNHMM using dropout and multilingual DNN training
    • Y. Miao and F. Metze, "Improving low-resource CD-DNNHMM using dropout and multilingual DNN training, " in Interspeech, 2013.
    • (2013) Interspeech
    • Miao, Y.1    Metze, F.2
  • 15
    • 84893704659 scopus 로고    scopus 로고
    • Hybrid acoustic models for distant and multichannel large vocabulary speech recognition
    • Dec
    • P. Swietojanski, A. Ghoshal, and S. Renals, "Hybrid acoustic models for distant and multichannel large vocabulary speech recognition, " in Proc. IEEE ASRU, Dec. 2013.
    • (2013) Proc. IEEE ASRU
    • Swietojanski, P.1    Ghoshal, A.2    Renals, S.3
  • 16
    • 84990059834 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • V. Nair and G. Hinton, "Rectified linear units improve restricted Boltzmann machines, " in In Proc. ICML, 2010, pp. 131-136.
    • (2010) Proc. ICML , pp. 131-136
    • Nair, V.1    Hinton, G.2
  • 18
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult, " Neural Networks, IEEE Transactions on, vol. 5, no. 2, pp. 157-166, 1994.
    • (1994) Neural Networks, IEEE Transactions on , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 19
    • 84890451371 scopus 로고    scopus 로고
    • Phone recognition with deep sparse rectifier neural networks
    • L. Toth, "Phone recognition with deep sparse rectifier neural networks, " in In Proc. ICASSP, 2013.
    • (2013) Proc. ICASSP
    • Toth, L.1
  • 20
    • 84890527827 scopus 로고    scopus 로고
    • Improving deep neural networks for LVCSR using rectified linear units and dropout
    • G. E. Dahl, T. N. Sainath, and G. E. Hinton, "Improving deep neural networks for LVCSR using rectified linear units and dropout, " in Proc. ICASSP, 2013.
    • (2013) Proc. ICASSP
    • Dahl, G.E.1    Sainath, T.N.2    Hinton, G.E.3
  • 23
    • 84893676344 scopus 로고    scopus 로고
    • Rectifier nonlinearities improve neural network acoustic models
    • A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectifier nonlinearities improve neural network acoustic models, " in Proc. ICML, 2013.
    • (2013) Proc. ICML
    • Maas, A.L.1    Hannun, A.Y.2    Ng, A.Y.3
  • 25
    • 84893651518 scopus 로고    scopus 로고
    • Deep maxout neural networks for speech recognition
    • Dec
    • M. Cai, Y. Shi, and J. Liu, "Deep maxout neural networks for speech recognition, " in Proc. ASRU, Dec 2013, pp. 291-296.
    • (2013) Proc. ASRU , pp. 291-296
    • Cai, M.1    Shi, Y.2    Liu, J.3
  • 26
    • 84893701756 scopus 로고    scopus 로고
    • Deep maxout networks for low-resource speech recognition
    • Y. Miao, F. Metze, and S. Rawat, "Deep maxout networks for low-resource speech recognition, " in Proc. ASRU, 2013.
    • (2013) Proc. ASRU
    • Miao, Y.1    Metze, F.2    Rawat, S.3
  • 27
    • 0032203257 scopus 로고    scopus 로고
    • Gradientbased learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradientbased learning applied to document recognition, " Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 29
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets, " Neural Computation, vol. 18, pp. 1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 31
    • 84874282188 scopus 로고    scopus 로고
    • Improving wideband speech recognition using mixed-bandwidth training data in CD-DNN-HMM
    • J. Li, D. Yu, J. Huang, and Y. Gong, "Improving wideband speech recognition using mixed-bandwidth training data in CD-DNN-HMM, " in In Proc. IEEE SLT, 2012, pp. 131-136.
    • (2012) Proc. IEEE SLT , pp. 131-136
    • Li, J.1    Yu, D.2    Huang, J.3    Gong, Y.4
  • 32
    • 70349213445 scopus 로고    scopus 로고
    • Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling
    • B. Kingsbury, "Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling, " in In Proc. ICASSP, 2009, pp. 3761-3764.
    • (2009) Proc. ICASSP , pp. 3761-3764
    • Kingsbury, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.