메뉴 건너뛰기




Volumn , Issue , 2013, Pages 55-59

Speaker adaptation of neural network acoustic models using i-vectors

Author keywords

[No Author keywords available]

Indexed keywords

ACOUSTIC FEATURES; ACOUSTIC MODEL; DEEP NEURAL NETWORKS; INPUT FEATURES; SPEAKER ADAPTATION; SPEAKER INDEPENDENTS; TARGET SPEAKER; WORD ERROR RATE;

EID: 84893691530     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ASRU.2013.6707705     Document Type: Conference Paper
Times cited : (675)

References (15)
  • 1
    • 84858976070 scopus 로고    scopus 로고
    • Feature engineering in contextdependent deep neural networks for conversational speech transcription
    • F. Seide, G. Li, X. Chien, and D. Yu, Feature engineering in contextdependent deep neural networks for conversational speech transcription, in Proc. ASRU, 2011.
    • (2011) Proc. ASRU
    • Seide, F.1    Li, G.2    Chien, X.3    Yu, D.4
  • 2
    • 84874226579 scopus 로고    scopus 로고
    • Adaptation of context-dependent deep neural networks for automatic speech recognition
    • K. Yao, D. Yu, F. Seide, H. Su, L. Deng, and Y. Gong, Adaptation of context-dependent deep neural networks for automatic speech recognition, in Proc. SLT, 2012.
    • (2012) Proc. SLT
    • Yao, K.1    Yu, D.2    Seide, F.3    Su, H.4    Deng, L.5    Gong, Y.6
  • 3
    • 84890509526 scopus 로고    scopus 로고
    • MLP-based factor analysis for tandem speech recognition
    • M. Ferras and H. Bourlard, MLP-based factor analysis for tandem speech recognition, in Proc. of ICASSP, 2013.
    • (2013) Proc. of ICASSP
    • Ferras, M.1    Bourlard, H.2
  • 4
    • 84890452886 scopus 로고    scopus 로고
    • Fast speaker adaptation of hybrid NN/HMM model for speech recognition based on discriminative learning of speaker code
    • O. Abdel-Hamid and H. Jiang, Fast speaker adaptation of hybrid NN/HMM model for speech recognition based on discriminative learning of speaker code, in Proc. of ICASSP, 2013.
    • (2013) Proc. of ICASSP
    • Abdel-Hamid, O.1    Jiang, H.2
  • 5
    • 84890542079 scopus 로고    scopus 로고
    • KL-divergence regularized deep neural network adaptation for improved large vocabulary speech recognition
    • D. Yu, K. Yao, H. Su, G. Li, and F. Seide, KL-divergence regularized deep neural network adaptation for improved large vocabulary speech recognition, in Proc. of ICASSP, 2013.
    • (2013) Proc. of ICASSP
    • Yu, D.1    Yao, K.2    Su, H.3    Li, G.4    Seide, F.5
  • 6
    • 84890492030 scopus 로고    scopus 로고
    • An investigation of deep neural networks for noise robust speech recognition
    • M. Seltzer, D. Yu, and Y. Wang, An investigation of deep neural networks for noise robust speech recognition, in Proc. of ICASSP, 2013.
    • (2013) Proc. of ICASSP
    • Seltzer, M.1    Yu, D.2    Wang, Y.3
  • 10
    • 84878418827 scopus 로고    scopus 로고
    • A feature space transformation method for personalization using generalized i-vector clustering
    • K. Yao, Y. Gong, and C. Liu, A feature space transformation method for personalization using generalized i-vector clustering, in Proc. Interspeech, 2012.
    • (2012) Proc. Interspeech
    • Yao, K.1    Gong, Y.2    Liu, C.3
  • 11
    • 84890484784 scopus 로고    scopus 로고
    • Rapid adaptation for mobile speech applications
    • M. Bacchiani, Rapid adaptation for mobile speech applications, in Proc. of ICASSP, 2013.
    • (2013) Proc. of ICASSP
    • Bacchiani, M.1
  • 12
    • 33947637189 scopus 로고    scopus 로고
    • Joint factor analysis of speaker and session variability: Theory and algorithms
    • P. Kenny, Joint factor analysis of speaker and session variability: Theory and algorithms, CRIM Technical Report, Tech. Rep., 2006.
    • (2006) CRIM Technical Report, Tech. Rep.
    • Kenny, P.1
  • 14
    • 84890454527 scopus 로고    scopus 로고
    • Low-rank matrix factorization for deep neural network training with high-dimensional output targets
    • T. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran, Low-rank matrix factorization for deep neural network training with high-dimensional output targets, in Proc. of ICASSP, 2013.
    • (2013) Proc. of ICASSP
    • Sainath, T.1    Kingsbury, B.2    Sindhwani, V.3    Arisoy, E.4    Ramabhadran, B.5
  • 15
    • 84878379108 scopus 로고    scopus 로고
    • Scalable minimum bayes risk training of deep neural network acoustic models using distributed hessian-free optimization
    • B. Kingsbury, T. Sainath, and H. Soltau, Scalable minimum Bayes risk training of deep neural network acoustic models using distributed Hessian-free optimization, in Proc. Interspeech, 2012.
    • (2012) Proc. Interspeech
    • Kingsbury, B.1    Sainath, T.2    Soltau, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.