메뉴 건너뛰기




Volumn 28, Issue 1, 2015, Pages 5-11

Bayesian predictive modeling based on multidimensional connectivity profiling

Author keywords

Brain functional connectivity; Brain structural connectivity; Classification; Magnetic resonance imaging; Multimodality

Indexed keywords

ADULT; AGED; CLASSIFICATION; DIFFUSION TENSOR IMAGING; HUMAN; HUMAN EXPERIMENT; MODEL; PREDICTION; REST; STRUCTURE ACTIVITY RELATION; ADOLESCENT; AGING; BAYES THEOREM; BIOLOGICAL MODEL; BRAIN; DIFFUSION WEIGHTED IMAGING; FEMALE; FUNCTIONAL NEUROIMAGING; MALE; NERVE TRACT; NUCLEAR MAGNETIC RESONANCE IMAGING; PHYSIOLOGY; VERY ELDERLY; YOUNG ADULT;

EID: 84945335320     PISSN: 19714009     EISSN: 23851996     Source Type: Journal    
DOI: 10.15274/NRJ-2014-10111     Document Type: Article
Times cited : (9)

References (38)
  • 2
    • 77956517416 scopus 로고    scopus 로고
    • Prediction of individual brain maturity using fmri
    • Dosenbach NU, Nardos B, Cohen AL, et al. Prediction of individual brain maturity using fMRI. Science 2010; 329(5997): 1358-1361. doi: 10.1126/science.1194144.
    • (2010) Science , vol.329 , Issue.5997 , pp. 1358-1361
    • Dosenbach, N.U.1    Nardos, B.2    Cohen, A.L.3
  • 3
    • 75149118852 scopus 로고    scopus 로고
    • Disease and the brain's dark energy
    • Zhang D and Raichle ME. Disease and the brain's dark energy. Nat Rev Neurol 2010; 6(1): 15-28. doi: 10.1038/nrneurol.2009.198.
    • (2010) Nat Rev Neurol , vol.6 , Issue.1 , pp. 15-28
    • Zhang, D.1    Raichle, M.E.2
  • 4
    • 84880814671 scopus 로고    scopus 로고
    • Imaging human connectomes at the macroscale
    • Craddock RC, Jbabdi S, Yan CG, et al. Imaging human connectomes at the macroscale. Nat Methods 2013; 10(6): 524-539. doi: 10.1038/nmeth.2482.
    • (2013) Nat Methods , vol.10 , Issue.6 , pp. 524-539
    • Craddock, R.C.1    Jbabdi, S.2    Yan, C.G.3
  • 5
    • 73149109077 scopus 로고    scopus 로고
    • Disease state prediction from resting state functional connectivity
    • Craddock RC, Holtzheimer PE, 3rd, Hu XP, et al. Disease state prediction from resting state functional connectivity. Magn Reson Med 2009; 62(6): 1619-1628. doi: 10.1002/mrm.22159.
    • (2009) Magn Reson Med , vol.62 , Issue.6 , pp. 1619-1628
    • Craddock, R.C.1    Holtzheimer, P.E.2    Hu, X.P.3
  • 6
    • 79955032227 scopus 로고    scopus 로고
    • Decoding brain states from fMRI connectivity graphs
    • May 15
    • Richiardi J, Eryilmaz H, Schwartz S, et al. Decoding brain states from fMRI connectivity graphs. Neuroimage 2011 May 15; 56(2): 616-26. doi: 10.1016/j.neuroimage.2010.05.081.
    • (2011) Neuroimage , vol.56 , Issue.2 , pp. 616-626
    • Richiardi, J.1    Eryilmaz, H.2    Schwartz, S.3
  • 7
    • 84866757398 scopus 로고    scopus 로고
    • Prediction of Alzheimer's disease using individual structural connectivity networks
    • Shao J, Myers N, Yang Q, et al. Prediction of Alzheimer's disease using individual structural connectivity networks. Neurobiol Aging 2012; 33(12): 2756-2765. doi: 10.1016/j.neurobiolaging.2012.01.017.
    • (2012) Neurobiol Aging , vol.33 , Issue.12 , pp. 2756-2765
    • Shao, J.1    Myers, N.2    Yang, Q.3
  • 8
    • 0036828879 scopus 로고    scopus 로고
    • Fast robust automated brain extraction
    • Smith SM. Fast robust automated brain extraction. Human Brain Mapp 2002; 17(3): 143-155. doi: 10.1002/hbm.10062.
    • (2002) Human Brain Mapp , vol.17 , Issue.3 , pp. 143-155
    • Smith, S.M.1
  • 10
    • 0036322886 scopus 로고    scopus 로고
    • Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain
    • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 2002; 15(1): 273-289. doi: 10.1006/nimg.2001.0978.
    • (2002) NeuroImage , vol.15 , Issue.1 , pp. 273-289
    • Tzourio-Mazoyer, N.1    Landeau, B.2    Papathanassiou, D.3
  • 11
    • 84861456815 scopus 로고    scopus 로고
    • Mapping inter-regional connectivity of the entire cortex to characterize major depressive disorder: A whole-brain diffusion tensor imaging tractography study
    • Korgaonkar MS, Cooper NJ, Williams LM, et al. Mapping inter-regional connectivity of the entire cortex to characterize major depressive disorder: a whole-brain diffusion tensor imaging tractography study. Neuroreport 2012; 23(9): 566-571. doi: 10.1097/WNR. 0b013e3283546264.
    • (2012) Neuroreport , vol.23 , Issue.9 , pp. 566-571
    • Korgaonkar, M.S.1    Cooper, N.J.2    Williams, L.M.3
  • 12
    • 33751096767 scopus 로고    scopus 로고
    • Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?
    • Behrens TE, Berg HJ, Jbabdi S, et al. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 2007; 34(1): 144-155. doi: 10.1016/j.neuroimage.2006.09.018.
    • (2007) Neuroimage , vol.34 , Issue.1 , pp. 144-155
    • Behrens, T.E.1    Berg, H.J.2    Jbabdi, S.3
  • 14
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley C and Raftery AE. Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 2002; 97(458): 611-631. doi: 10.1198/016214502760047131.
    • (2002) J Am Stat Assoc , vol.97 , Issue.458 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 15
    • 0004066260 scopus 로고    scopus 로고
    • Finite mixture models: Wiley
    • McLachlan G, Peel D. Finite mixture models: Wiley-Interscience. 2000. doi: 10.1002/0471721182.
    • (2000) Interscience
    • McLachlan, G.1    Peel, D.2
  • 16
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster AP, Laird NM and Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J Royal Stat Soc 1977; 39(1): 1-38.
    • (1977) J Royal Stat Soc , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 17
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann Stat 1978; 6(2): 461-464. doi: 10.1214/aos/1176344136.
    • (1978) Ann Stat , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 20
    • 32344433309 scopus 로고    scopus 로고
    • A Bayesian network classifier with inverse tree structure for voxel-wise mr image analysis
    • Chen R, Herskovits EH. A Bayesian network classifier with inverse tree structure for voxel-wise MR image analysis. In the 11th conference of SIGKDD; 2005.
    • (2005) The 11th Conference of SIGKDD
    • Chen, R.1    Herskovits, E.H.2
  • 21
    • 36248969574 scopus 로고    scopus 로고
    • Clinical diagnosis based on Bayesian classification of functional magnetic-resonance data
    • Chen R and Herskovits EH. Clinical diagnosis based on bayesian classification of functional magnetic-resonance data. Neuroinformatics 2007; 5(3): 178-188. doi: 10.1007/s12021-007-0007-2.
    • (2007) Neuroinformatics , vol.5 , Issue.3 , pp. 178-188
    • Chen, R.1    Herskovits, E.H.2
  • 22
    • 26844519487 scopus 로고    scopus 로고
    • Graphical-model based morphometric analysis
    • Chen R and Herskovits EH. Graphical-model based morphometric analysis. IEEE Trans Med Imaging 2005; 24(10): 1237-1248. doi: 10.1109/TMI.2005.854305.
    • (2005) IEEE Trans Med Imaging , vol.24 , Issue.10 , pp. 1237-1248
    • Chen, R.1    Herskovits, E.H.2
  • 23
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper GF and Herskovits EH. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 1992; 9(4): 309-347. doi: 10.1023/A:1022649401552.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.H.2
  • 24
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D and Chickering DM. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Machine Learning 1995; 20: 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Chickering, D.M.2
  • 25
    • 21244468777 scopus 로고    scopus 로고
    • Combining multiple clusterings using evidence accumulation
    • Fred A and Jain AK. Combining multiple clusterings using evidence accumulation. IEEE Trans Pattern Anal Mach Intell 2005; 27(6): 835-850. doi: 10.1109/TPAMI.2005.113.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.6 , pp. 835-850
    • Fred, A.1    Jain, A.K.2
  • 26
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random Forests. Machine Learning 2001; 45(1): 5-32. doi: 10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 27
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine learning 1996; 26(2): 123-140. doi: 10.1023/A:1018054314350.
    • (1996) Machine Learning , vol.26 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 31
    • 84873742703 scopus 로고    scopus 로고
    • Resting-state functional connectivity in normal brain aging
    • Ferreira LK and Busatto GF. Resting-state functional connectivity in normal brain aging. Neurosci Biobehav Rev 2013; 37(3): 384-400. doi: 10.1016/j.neubiorev.2013.01.017.
    • (2013) Neurosci Biobehav Rev , vol.37 , Issue.3 , pp. 384-400
    • Ferreira, L.K.1    Busatto, G.F.2
  • 35
    • 77953290751 scopus 로고    scopus 로고
    • Machine-learning techniques for building a diagnostic model for very mild dementia
    • Chen R and Herskovits EH. Machine-learning techniques for building a diagnostic model for very mild dementia. Neuroimage 2010; 52(1): 234-244. doi: 10.1016/j.neuroimage.2010.03.084.
    • (2010) Neuroimage , vol.52 , Issue.1 , pp. 234-244
    • Chen, R.1    Herskovits, E.H.2
  • 36
    • 31844446085 scopus 로고    scopus 로고
    • Network analysis of mild cognitive impairment
    • Chen R and Herskovits EH. Network analysis of mild cognitive impairment. NeuroImage 2006; 29(4): 1252-1259. doi: 10.1016/j.neuroimage.2005.08.020.
    • (2006) NeuroImage , vol.29 , Issue.4 , pp. 1252-1259
    • Chen, R.1    Herskovits, E.H.2
  • 37
    • 84879460078 scopus 로고    scopus 로고
    • Predicting dementia development in Parkinson's disease using Bayesian network classifiers
    • Morales DA, Vives-Gilabert Y, Gomez-Anson B, et al. Predicting dementia development in Parkinson's disease using Bayesian network classifiers. Psychiatry Res 2013; 213(2): 92-98. doi: 10.1016/j.pscychresns.2012.06.001.
    • (2013) Psychiatry Res , vol.213 , Issue.2 , pp. 92-98
    • Morales, D.A.1    Vives-Gilabert, Y.2    Gomez-Anson, B.3
  • 38
    • 79955480798 scopus 로고    scopus 로고
    • Measuring functional connectivity using meg: Methodology and comparison with fcmri
    • Brookes MJ, Hale JR, Zumer JM, et al. Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 2011; 56(3): 1082-1104. doi: 10.1016/j.neuroimage.2011.02.054.
    • (2011) Neuroimage , vol.56 , Issue.3 , pp. 1082-1104
    • Brookes, M.J.1    Hale, J.R.2    Zumer, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.