-
1
-
-
0031273462
-
Adaptive probabilistic networks with hidden variables
-
Binder, J., Koller, D., Russel, S., & Kanazawa, K. (1997). Adaptive probabilistic networks with hidden variables. Machine Learning, 29, 213-244.
-
(1997)
Machine Learning
, vol.29
, pp. 213-244
-
-
Binder, J.1
Koller, D.2
Russel, S.3
Kanazawa, K.4
-
2
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
3
-
-
0035478854
-
Random forests
-
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 532.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 532
-
-
Breiman, L.1
-
4
-
-
0035171447
-
Functional brain imaging of young, nondemented, and demented older adults
-
Buckner, R. L., Snyder, A. Z., Sanders, A. L., Raichle, M. E., & Morris, J. C. (2000). Functional brain imaging of young, nondemented, and demented older adults. Journal of Cognitive Neuroscience Supplement, 12(2), 24-34.
-
(2000)
Journal of Cognitive Neuroscience Supplement
, vol.12
, Issue.2
, pp. 24-34
-
-
Buckner, R.L.1
Snyder, A.Z.2
Sanders, A.L.3
Raichle, M.E.4
Morris, J.C.5
-
5
-
-
18144438656
-
Reproducibility of fMRI results across four institutions using a spatial working memory task
-
Casey, B. J., Cohen, J. D., OCraven, K., Davidson, R. J., Irwin, W., Nelson, C. A., et al. (1998). Reproducibility of fMRI results across four institutions using a spatial working memory task. NeuroImage, 8(3), 249-261.
-
(1998)
NeuroImage
, vol.8
, Issue.3
, pp. 249-261
-
-
Casey, B.J.1
Cohen, J.D.2
OCraven, K.3
Davidson, R.J.4
Irwin, W.5
Nelson, C.A.6
-
6
-
-
32344433309
-
A Bayesian network classifier with inverse tree structure for voxelwise magnetic resonance image analysis
-
New York, NY, USA
-
Chen, R., & Herskovits, E. H. (2005a). A Bayesian network classifier with inverse tree structure for voxelwise magnetic resonance image analysis. In Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (pp. 4-12). New York, NY, USA.
-
(2005)
Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining
, pp. 4-12
-
-
Chen, R.1
Herskovits, E.H.2
-
7
-
-
26844519487
-
Graphical-model based morphometric analysis
-
Chen, R., & Herskovits, E. H. (2005b). Graphical-model based morphometric analysis. IEEE Transaction on Medical Imaging, 24(10), 1237-1248.
-
(2005)
IEEE Transaction on Medical Imaging
, vol.24
, Issue.10
, pp. 1237-1248
-
-
Chen, R.1
Herskovits, E.H.2
-
8
-
-
33947127746
-
Graphical-model-based multivariate analysis of functional magnetic resonance data
-
Chen, R., & Herskovits, E. H. (2007). Graphical-model-based multivariate analysis of functional magnetic resonance data. NeuroImage, 35, 635-647.
-
(2007)
NeuroImage
, vol.35
, pp. 635-647
-
-
Chen, R.1
Herskovits, E.H.2
-
9
-
-
0042614837
-
Comparing Bayesian network classifiers
-
Cheng, J., & Greiner, R. (1999). Comparing Bayesian network classifiers. In Proceedings of UAI-99 (pp. 101-108).
-
(1999)
Proceedings of UAI-99
, pp. 101-108
-
-
Cheng, J.1
Greiner, R.2
-
10
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G.F., & Herskovits, E. H. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.H.2
-
11
-
-
0032797084
-
The effect of normal aging on the coupling of neural activity to the bold hemodynamic response
-
Esposito, M. D., Zarahn, E., Aguirre, G. K., & Rypma, B. (1999). The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. NeuroImage, 10(1), 614.
-
(1999)
NeuroImage
, vol.10
, Issue.1
, pp. 614
-
-
Esposito, M.D.1
Zarahn, E.2
Aguirre, G.K.3
Rypma, B.4
-
12
-
-
0028196076
-
3D statistical neuroanatomical models from 305 MRI volumes
-
1993
-
Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. D., Kelly, R. L., & Peters, T. M. (1993). 3D statistical neuroanatomical models from 305 MRI volumes. In IEEE-Nuclear Science Symposium and Medical Imaging Conference (pp. 1813-1817).
-
(1813)
IEEE-Nuclear Science Symposium and Medical Imaging Conference (pp
-
-
Evans, A.C.1
Collins, D.L.2
Mills, S.R.3
Brown, E.D.4
Kelly, R.L.5
Peters, T.M.6
-
13
-
-
16244417570
-
Patient classification from fMRI brain activation maps
-
Ford, J., Farid, H., Makedon, F., Flashman, L. A., McAllister, T. W., Megalooikonomou, V., et al. (2003). Patient classification from fMRI brain activation maps. In Sixth International Conference on MICCAI.
-
(2003)
Sixth International Conference on MICCAI
-
-
Ford, J.1
Farid, H.2
Makedon, F.3
Flashman, L.A.4
McAllister, T.W.5
Megalooikonomou, V.6
-
15
-
-
0031276011
-
Bayesian network classifiers
-
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29, 131-163.
-
(1997)
Machine Learning
, vol.29
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
16
-
-
0028190347
-
Functional and effective connectivity in neuroimaging: A synthesis
-
Friston, K. J. (2004). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2, 56-78.
-
(2004)
Human Brain Mapping
, vol.2
, pp. 56-78
-
-
Friston, K.J.1
-
17
-
-
0041924877
-
Dynamic causal modeling
-
Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modeling. Neuroimage, 1273-1302.
-
(2003)
Neuroimage
, pp. 1273-1302
-
-
Friston, K.J.1
Harrison, L.2
Penny, W.3
-
18
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
20
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
21
-
-
0031822229
-
Functional interactions between the medial temporal lobes and posterior neocortex related to episodic memory retrieval
-
Kohler, S., McIntosh, A. R., Moscovitch, M., & Winocur, G. (1998). Functional interactions between the medial temporal lobes and posterior neocortex related to episodic memory retrieval. Cerebral Cortex, 8, 451-461.
-
(1998)
Cerebral Cortex
, vol.8
, pp. 451-461
-
-
Kohler, S.1
McIntosh, A.R.2
Moscovitch, M.3
Winocur, G.4
-
23
-
-
0028044967
-
Network analysis of cortical visual pathways mapped with PET
-
McIntosh, A. R., Grady, C. L., Ungerleider, L. G., Haxby, J. V., Rapoport, S. I., & Horwitz, B. (1994). Network analysis of cortical visual pathways mapped with PET. Journal of Neuroscience, 14 (2), 655-666.
-
(1994)
Journal of Neuroscience
, vol.14
, Issue.2
, pp. 655-666
-
-
McIntosh, A.R.1
Grady, C.L.2
Ungerleider, L.G.3
Haxby, J.V.4
Rapoport, S.I.5
Horwitz, B.6
-
24
-
-
0027425211
-
The Clinical Dementia Rating (CDR): Current version and scoring rules
-
Morris, J. C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43(11), 2412-2414.
-
(1993)
Neurology
, vol.43
, Issue.11
, pp. 2412-2414
-
-
Morris, J.C.1
-
27
-
-
0032971258
-
Reproducibility of BOLD-based functional MRI obtained at 4T
-
Tegeler, C., Strother, S. C., Anderson, J. R., & Kim, S. G. (1999). Reproducibility of BOLD-based functional MRI obtained at 4T. Human Brain Mapping, 7(4), 267-283.
-
(1999)
Human Brain Mapping
, vol.7
, Issue.4
, pp. 267-283
-
-
Tegeler, C.1
Strother, S.C.2
Anderson, J.R.3
Kim, S.G.4
-
29
-
-
33745153820
-
Machine learning for clinical diagnosis from functional magnetic resonance imaging
-
Zhang, L., Samaras, D., Tomasi, D., Volkow, N., & Goldstein, R. (2005). Machine learning for clinical diagnosis from functional magnetic resonance imaging. In IEEE Proceedings of CVPR (pp. 1211-1217).
-
(2005)
IEEE Proceedings of CVPR
, pp. 1211-1217
-
-
Zhang, L.1
Samaras, D.2
Tomasi, D.3
Volkow, N.4
Goldstein, R.5
|