메뉴 건너뛰기




Volumn 23, Issue 3, 2016, Pages 422-437

New Confidence Intervals and Bias Comparisons Show That Maximum Likelihood Can Beat Multiple Imputation in Small Samples

Author keywords

confidence intervals; finite samples; maximum likelihood; multiple imputation; small samples

Indexed keywords

FISHER INFORMATION MATRIX; MAXIMUM LIKELIHOOD; SAMPLING; STATISTICAL TESTS;

EID: 84945218777     PISSN: 10705511     EISSN: 15328007     Source Type: Journal    
DOI: 10.1080/10705511.2015.1047931     Document Type: Article
Times cited : (68)

References (53)
  • 2
    • 0000254441 scopus 로고
    • Maximum likelihood estimates for a multivariate normal distribution when some observations are missing
    • T.W.Anderson, (1957). Maximum likelihood estimates for a multivariate normal distribution when some observations are missing. Journal of the American Statistical Association, 52, 200–203. doi:10.1080/01621459.1957.10501379
    • (1957) Journal of the American Statistical Association , vol.52 , pp. 200-203
    • Anderson, T.W.1
  • 3
    • 77955807436 scopus 로고    scopus 로고
    • A review of hot deck imputation for survey non‐response
    • R.R.Andridge,, & R.J.A.Little, (2010). A review of hot deck imputation for survey non‐response. International Statistical Review, 78(1), 40–64. doi:10.1111/j.1751-5823.2010.00103.x
    • (2010) International Statistical Review , vol.78 , Issue.1 , pp. 40-64
    • Andridge, R.R.1    Little, R.J.A.2
  • 4
    • 2442736478 scopus 로고    scopus 로고
    • Small-sample degrees of freedom with multiple imputation
    • J.Barnard,, & D.B.Rubin, (1999). Small-sample degrees of freedom with multiple imputation. Biometrika, 86, 948–955. doi:10.1093/biomet/86.4.948
    • (1999) Biometrika , vol.86 , pp. 948-955
    • Barnard, J.1    Rubin, D.B.2
  • 5
    • 31344481723 scopus 로고    scopus 로고
    • Multiple imputation techniques in small sample clinical trials
    • S.A.Barnes,, S.R.Lindborg,, & J.W.Seaman, (2006). Multiple imputation techniques in small sample clinical trials. Statistics in Medicine, 25, 233–245. doi:10.1002/sim.2231
    • (2006) Statistics in Medicine , vol.25 , pp. 233-245
    • Barnes, S.A.1    Lindborg, S.R.2    Seaman, J.W.3
  • 6
    • 54049109688 scopus 로고    scopus 로고
    • What improves with increased missing data imputations?
    • T.E.Bodner, (2008). What improves with increased missing data imputations? Structural Equation Modeling, 15, 651–675. doi:10.1080/10705510802339072
    • (2008) Structural Equation Modeling , vol.15 , pp. 651-675
    • Bodner, T.E.1
  • 7
    • 84885109355 scopus 로고    scopus 로고
    • A note on the relationships between multiple imputation, maximum likelihood and fully Bayesian methods for missing responses in linear regression models
    • 10.4310/SII.2013.v6.n3.a2
    • Q.Chen,, & J.G.Ibrahim, (2013). A note on the relationships between multiple imputation, maximum likelihood and fully Bayesian methods for missing responses in linear regression models. Statistics and Its Interface, 6, 315–324. doi:10.4310/SII.2013.v6.n3.a2
    • (2013) Statistics and Its Interface , vol.6 , pp. 315-324
    • Chen, Q.1    Ibrahim, J.G.2
  • 8
    • 3843065624 scopus 로고    scopus 로고
    • Economic perceptions and executive approval in comparative perspective
    • J.E.Cohen, (2004). Economic perceptions and executive approval in comparative perspective. Political Behavior, 26(1), 27–43.
    • (2004) Political Behavior , vol.26 , Issue.1 , pp. 27-43
    • Cohen, J.E.1
  • 9
    • 38349186156 scopus 로고    scopus 로고
    • Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment
    • H.Demirtas,, S.A.Freels,, & R.M.Yucel, (2008). Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment. Journal of Statistical Computation & Simulation, 78(1), 69–84. doi:10.1080/10629360600903866
    • (2008) Journal of Statistical Computation & Simulation , vol.78 , Issue.1 , pp. 69-84
    • Demirtas, H.1    Freels, S.A.2    Yucel, R.M.3
  • 10
    • 41549095587 scopus 로고    scopus 로고
    • Imputing continuous data under some non-Gaussian distributions
    • H.Demirtas,, & D.Hedeker, (2008). Imputing continuous data under some non-Gaussian distributions. Statistica Neerlandica, 62, 193–205. doi:10.1111/j.1467-9574.2007.00377.x
    • (2008) Statistica Neerlandica , vol.62 , pp. 193-205
    • Demirtas, H.1    Hedeker, D.2
  • 11
    • 0018547019 scopus 로고
    • Ridge regression and James-Stein estimation: Review and comments
    • N.R.Draper,, & R.C.V.Nostrand, (1979). Ridge regression and James-Stein estimation: Review and comments. Technometrics, 21, 451–466. doi:10.1080/00401706.1979.10489815
    • (1979) Technometrics , vol.21 , pp. 451-466
    • Draper, N.R.1    Nostrand, R.C.V.2
  • 12
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • J.W.Graham,, A.E.Olchowski,, & T.D.Gilreath, (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8, 206–213. doi:10.1007/s11121-007-0070-9
    • (2007) Prevention Science , vol.8 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 13
    • 34548648064 scopus 로고    scopus 로고
    • A comparison of three approaches to handling incomplete state-level data
    • J.S.Granberg-Rademacker, (2007). A comparison of three approaches to handling incomplete state-level data. State Politics & Policy Quarterly, 7(3), 325–338.
    • (2007) State Politics & Policy Quarterly , vol.7 , Issue.3 , pp. 325-338
    • Granberg-Rademacker, J.S.1
  • 14
    • 0001319409 scopus 로고
    • A note on the transformation of chi-squared variables to normality
    • D.M.Hawkins,, & R.A.J.Wixley, (1986). A note on the transformation of chi-squared variables to normality. The American Statistician, 40, 296–298. doi:10.2307/2684608
    • (1986) The American Statistician , vol.40 , pp. 296-298
    • Hawkins, D.M.1    Wixley, R.A.J.2
  • 15
    • 84865806474 scopus 로고    scopus 로고
    • Multiple imputation using multivariate gh transformations
    • 10.1080/02664763.2012.702268
    • Y.He,, & T.E.Raghunathan, (2012). Multiple imputation using multivariate gh transformations. Journal of Applied Statistics, 39, 2177–2198. doi:10.1080/02664763.2012.702268
    • (2012) Journal of Applied Statistics , vol.39 , pp. 2177-2198
    • He, Y.1    Raghunathan, T.E.2
  • 16
    • 0030343462 scopus 로고    scopus 로고
    • Distinguishing “missing at random” and “missing completely at random
    • D.F.Heitjan,, & S.Basu, (1996). Distinguishing “missing at random” and “missing completely at random”. The American Statistician, 50, 207–213. doi:10.2307/2684656
    • (1996) The American Statistician , vol.50 , pp. 207-213
    • Heitjan, D.F.1    Basu, S.2
  • 17
    • 17044439139 scopus 로고    scopus 로고
    • The quality of factor solutions in exploratory factor analysis: The influence of sample size, communality, and overdetermination
    • K.Y.Hogarty,, C.V.Hines,, J.D.Kromrey,, J.M.Ferron,, & K.R.Mumford, (2005). The quality of factor solutions in exploratory factor analysis: The influence of sample size, communality, and overdetermination. Educational and Psychological Measurement, 65, 202–226. doi:10.1177/0013164404267287
    • (2005) Educational and Psychological Measurement , vol.65 , pp. 202-226
    • Hogarty, K.Y.1    Hines, C.V.2    Kromrey, J.D.3    Ferron, J.M.4    Mumford, K.R.5
  • 18
    • 84962736698 scopus 로고    scopus 로고
    • Hoogendoorn, A., November 18). Mulitple [sic] imputation in a very simple situation: Just two variables. Retrieved from
    • Hoogendoorn, A. (2009, November 18). Mulitple [sic] imputation in a very simple situation: Just two variables. Retrieved from http://www.mail-archive.com/impute@listserv.it.northwestern.edu/msg00455.html
    • (2009)
  • 19
    • 0043109420 scopus 로고    scopus 로고
    • Sample size for multiple regression: Obtaining regression coefficients that are accurate, not simply significant
    • K.Kelley,, & S.E.Maxwell, (2003). Sample size for multiple regression: Obtaining regression coefficients that are accurate, not simply significant. Psychological Methods, 8, 305–321. doi:10.1037/1082-989X.8.3.305
    • (2003) Psychological Methods , vol.8 , pp. 305-321
    • Kelley, K.1    Maxwell, S.E.2
  • 20
    • 23244448334 scopus 로고    scopus 로고
    • Finite sample properties of multiple imputation estimators
    • J.K.Kim, (2004). Finite sample properties of multiple imputation estimators. The Annals of Statistics, 32, 766–783. doi:10.1214/009053604000000175
    • (2004) The Annals of Statistics , vol.32 , pp. 766-783
    • Kim, J.K.1
  • 21
    • 0141976273 scopus 로고    scopus 로고
    • Women’s political representation: The importance of ideology
    • S.Kunovich,, & P.M.Paxton, (2003). Women’s political representation: The importance of ideology. Social Forces, 82(1), 87–113. doi:10.1353/sof.2003.0105
    • (2003) Social Forces , vol.82 , Issue.1 , pp. 87-113
    • Kunovich, S.1    Paxton, P.M.2
  • 23
    • 0017201945 scopus 로고
    • Inference about means from incomplete multivariate data
    • R.J.A.Little, (1976). Inference about means from incomplete multivariate data. Biometrika, 63, 593–604. doi:10.1093/biomet/63.3.593
    • (1976) Biometrika , vol.63 , pp. 593-604
    • Little, R.J.A.1
  • 24
    • 0342558089 scopus 로고
    • Approximately calibrated small sample inference about means from bivariate normal data with missing values
    • R.J.A.Little, (1988). Approximately calibrated small sample inference about means from bivariate normal data with missing values. Computational Statistics & Data Analysis, 7, 161–178. doi:10.1016/0167-9473(88)90090-4
    • (1988) Computational Statistics & Data Analysis , vol.7 , pp. 161-178
    • Little, R.J.A.1
  • 26
    • 84965572693 scopus 로고
    • The analysis of social science data with missing values
    • R.J.A.Little,, & D.B.Rubin, (1989). The analysis of social science data with missing values. Sociological Methods & Research, 18, 292–326. doi:10.1177/0049124189018002004
    • (1989) Sociological Methods & Research , vol.18 , pp. 292-326
    • Little, R.J.A.1    Rubin, D.B.2
  • 29
    • 79959799592 scopus 로고    scopus 로고
    • Sample size in psychological research over the past 30 years
    • J.M.Marszalek,, C.Barber,, J.Kohlhart,, & C.B.Holmes, (2011). Sample size in psychological research over the past 30 years. Perceptual and Motor Skills, 112, 331–348. doi:10.2466/03.11.PMS.112.2.331-348
    • (2011) Perceptual and Motor Skills , vol.112 , pp. 331-348
    • Marszalek, J.M.1    Barber, C.2    Kohlhart, J.3    Holmes, C.B.4
  • 30
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input
    • X.-L.Meng, (1994). Multiple-imputation inferences with uncongenial sources of input. Statistical Science, 9, 538–558.
    • (1994) Statistical Science , vol.9 , pp. 538-558
    • Meng, X.-L.1
  • 31
    • 0000542546 scopus 로고
    • A test for equality of means of correlated variates with missing data on one response
    • D.F.Morrison, (1973). A test for equality of means of correlated variates with missing data on one response. Biometrika, 60, 101–105. doi:10.1093/biomet/60.1.101
    • (1973) Biometrika , vol.60 , pp. 101-105
    • Morrison, D.F.1
  • 32
    • 0345040656 scopus 로고    scopus 로고
    • How to use a Monte Carlo study to decide on sample size and determine power
    • L.K.Muthén,, & B.O.Muthén, (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 9, 599–620. doi:10.1207/S15328007SEM0904_8
    • (2002) Structural Equation Modeling , vol.9 , pp. 599-620
    • Muthén, L.K.1    Muthén, B.O.2
  • 33
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • T.E.Raghunathan,, J.M.Lepkowski,, J.Van Hoewyk,, & P.W.Solenberger, (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27(1), 85–95.
    • (2001) Survey Methodology , vol.27 , Issue.1 , pp. 85-95
    • Raghunathan, T.E.1    Lepkowski, J.M.2    Van Hoewyk, J.3    Solenberger, P.W.4
  • 34
    • 34548452163 scopus 로고    scopus 로고
    • Small-sample degrees of freedom for multi-component significance tests with multiple imputation for missing data
    • J.P.Reiter, (2007). Small-sample degrees of freedom for multi-component significance tests with multiple imputation for missing data. Biometrika, 94, 502–508. doi:10.1093/biomet/asm028
    • (2007) Biometrika , vol.94 , pp. 502-508
    • Reiter, J.P.1
  • 37
    • 70449595827 scopus 로고    scopus 로고
    • A two-stage approach to missing data: Theory and application to auxiliary variables
    • V.Savalei,, & P.M.Bentler, (2009). A two-stage approach to missing data: Theory and application to auxiliary variables. Structural Equation Modeling, 16, 477–497. doi:10.1080/10705510903008238
    • (2009) Structural Equation Modeling , vol.16 , pp. 477-497
    • Savalei, V.1    Bentler, P.M.2
  • 38
    • 84864647620 scopus 로고    scopus 로고
    • On obtaining estimates of the fraction of missing information from full information maximum likelihood
    • V.Savalei,, & M.Rhemtulla, (2012). On obtaining estimates of the fraction of missing information from full information maximum likelihood. Structural Equation Modeling, 19, 477–494. doi:10.1080/10705511.2012.687669
    • (2012) Structural Equation Modeling , vol.19 , pp. 477-494
    • Savalei, V.1    Rhemtulla, M.2
  • 43
    • 18444377893 scopus 로고    scopus 로고
    • Teacher’s corner: How many imputations are needed? A comment on Hershberger and Fisher (2003)
    • 10.1207/s15328007sem1202_8
    • P.T.von Hippel, (2005). Teacher’s corner: How many imputations are needed? A comment on Hershberger and Fisher (2003). Structural Equation Modeling, 12, 334–335. doi:10.1207/s15328007sem1202_8
    • (2005) Structural Equation Modeling , vol.12 , pp. 334-335
    • von Hippel, P.T.1
  • 44
    • 34548736509 scopus 로고    scopus 로고
    • Regression with missing Ys: An improved strategy for analyzing multiply imputed data
    • P.T.von Hippel, (2007). Regression with missing Ys: An improved strategy for analyzing multiply imputed data. Sociological Methodology, 37, 83–117. doi:10.1111/j.1467-9531.2007.00180.x
    • (2007) Sociological Methodology , vol.37 , pp. 83-117
    • von Hippel, P.T.1
  • 45
    • 69149105188 scopus 로고    scopus 로고
    • How to impute interactions, squares, and other transformed variables
    • P.T.von Hippel, (2009). How to impute interactions, squares, and other transformed variables. Sociological Methodology, 39, 265–291. doi:10.1111/j.1467-9531.2009.01215.x
    • (2009) Sociological Methodology , vol.39 , pp. 265-291
    • von Hippel, P.T.1
  • 46
    • 84885708491 scopus 로고    scopus 로고
    • The bias and efficiency of incomplete-data estimators in small univariate normal samples
    • P.T.von Hippel, (2013a). The bias and efficiency of incomplete-data estimators in small univariate normal samples. Sociological Methods & Research, 42, 531–558. doi:10.1177/0049124113494582
    • (2013) Sociological Methods & Research , vol.42 , pp. 531-558
    • von Hippel, P.T.1
  • 47
    • 84875526144 scopus 로고    scopus 로고
    • Should a normal imputation model be modified to impute skewed variables?
    • P.T.von Hippel, (2013b). Should a normal imputation model be modified to impute skewed variables? Sociological Methods & Research, 42(1), 105–138. doi:10.1177/0049124112464866
    • (2013) Sociological Methods & Research , vol.42 , Issue.1 , pp. 105-138
    • von Hippel, P.T.1
  • 48
    • 80053977924 scopus 로고    scopus 로고
    • A closer examination of three small-sample approximations to the multiple-imputation degrees of freedom
    • D.A.Wagstaff,, & O.Harel, (2011). A closer examination of three small-sample approximations to the multiple-imputation degrees of freedom. Stata Journal, 11, 403–419.
    • (2011) Stata Journal , vol.11 , pp. 403-419
    • Wagstaff, D.A.1    Harel, O.2
  • 49
    • 0011936489 scopus 로고    scopus 로고
    • Large-sample theory for parametric multiple imputation procedures
    • N.Wang,, & J.M.Robins, (1998). Large-sample theory for parametric multiple imputation procedures. Biometrika, 85, 935–948. doi:10.1093/biomet/85.4.935
    • (1998) Biometrika , vol.85 , pp. 935-948
    • Wang, N.1    Robins, J.M.2
  • 50
    • 84886428907 scopus 로고    scopus 로고
    • Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety
    • E.J.Wolf,, K.M.Harrington,, S.L.Clark,, & M.W.Miller, (2013). Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety. Educational and Psychological Measurement, 73, 913–934. doi:10.1177/0013164413495237
    • (2013) Educational and Psychological Measurement , vol.73 , pp. 913-934
    • Wolf, E.J.1    Harrington, K.M.2    Clark, S.L.3    Miller, M.W.4
  • 51
    • 36248964143 scopus 로고    scopus 로고
    • Structural equation modeling
    • Rao C.R., Sinharay S., (eds), Boston, MA: North Holland
    • K.-H.Yuan,, & P.M.Bentler, (2007). Structural equation modeling. In C.R.Rao & S.Sinharay (Eds.), Handbook of statistics: Vol. 26. Psychometrics (pp. 297–358). Boston, MA: North Holland.
    • (2007) Handbook of statistics: Vol. 26. Psychometrics , pp. 297-358
    • Yuan, K.-H.1    Bentler, P.M.2
  • 52
    • 57849140613 scopus 로고    scopus 로고
    • SEM with missing data and unknown population distributions using two-stage ML: Theory and its application
    • K.-H.Yuan,, & L.Lu, (2008). SEM with missing data and unknown population distributions using two-stage ML: Theory and its application. Multivariate Behavioral Research, 43, 621–652. doi:10.1080/00273170802490699
    • (2008) Multivariate Behavioral Research , vol.43 , pp. 621-652
    • Yuan, K.-H.1    Lu, L.2
  • 53
    • 84868121050 scopus 로고    scopus 로고
    • ML versus MI for missing data with violation of distribution conditions
    • K.-H.Yuan,, F.Yang-Wallentin,, & P.M.Bentler, (2012). ML versus MI for missing data with violation of distribution conditions. Sociological Methods & Research, 41, 598–629. doi:10.1177/0049124112460373
    • (2012) Sociological Methods & Research , vol.41 , pp. 598-629
    • Yuan, K.-H.1    Yang-Wallentin, F.2    Bentler, P.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.