-
2
-
-
0000254441
-
Maximum likelihood estimates for a multivariate normal distribution when some observations are missing
-
T.W.Anderson, (1957). Maximum likelihood estimates for a multivariate normal distribution when some observations are missing. Journal of the American Statistical Association, 52, 200–203. doi:10.1080/01621459.1957.10501379
-
(1957)
Journal of the American Statistical Association
, vol.52
, pp. 200-203
-
-
Anderson, T.W.1
-
3
-
-
77955807436
-
A review of hot deck imputation for survey non‐response
-
R.R.Andridge,, & R.J.A.Little, (2010). A review of hot deck imputation for survey non‐response. International Statistical Review, 78(1), 40–64. doi:10.1111/j.1751-5823.2010.00103.x
-
(2010)
International Statistical Review
, vol.78
, Issue.1
, pp. 40-64
-
-
Andridge, R.R.1
Little, R.J.A.2
-
4
-
-
2442736478
-
Small-sample degrees of freedom with multiple imputation
-
J.Barnard,, & D.B.Rubin, (1999). Small-sample degrees of freedom with multiple imputation. Biometrika, 86, 948–955. doi:10.1093/biomet/86.4.948
-
(1999)
Biometrika
, vol.86
, pp. 948-955
-
-
Barnard, J.1
Rubin, D.B.2
-
5
-
-
31344481723
-
Multiple imputation techniques in small sample clinical trials
-
S.A.Barnes,, S.R.Lindborg,, & J.W.Seaman, (2006). Multiple imputation techniques in small sample clinical trials. Statistics in Medicine, 25, 233–245. doi:10.1002/sim.2231
-
(2006)
Statistics in Medicine
, vol.25
, pp. 233-245
-
-
Barnes, S.A.1
Lindborg, S.R.2
Seaman, J.W.3
-
6
-
-
54049109688
-
What improves with increased missing data imputations?
-
T.E.Bodner, (2008). What improves with increased missing data imputations? Structural Equation Modeling, 15, 651–675. doi:10.1080/10705510802339072
-
(2008)
Structural Equation Modeling
, vol.15
, pp. 651-675
-
-
Bodner, T.E.1
-
7
-
-
84885109355
-
A note on the relationships between multiple imputation, maximum likelihood and fully Bayesian methods for missing responses in linear regression models
-
10.4310/SII.2013.v6.n3.a2
-
Q.Chen,, & J.G.Ibrahim, (2013). A note on the relationships between multiple imputation, maximum likelihood and fully Bayesian methods for missing responses in linear regression models. Statistics and Its Interface, 6, 315–324. doi:10.4310/SII.2013.v6.n3.a2
-
(2013)
Statistics and Its Interface
, vol.6
, pp. 315-324
-
-
Chen, Q.1
Ibrahim, J.G.2
-
8
-
-
3843065624
-
Economic perceptions and executive approval in comparative perspective
-
J.E.Cohen, (2004). Economic perceptions and executive approval in comparative perspective. Political Behavior, 26(1), 27–43.
-
(2004)
Political Behavior
, vol.26
, Issue.1
, pp. 27-43
-
-
Cohen, J.E.1
-
9
-
-
38349186156
-
Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment
-
H.Demirtas,, S.A.Freels,, & R.M.Yucel, (2008). Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment. Journal of Statistical Computation & Simulation, 78(1), 69–84. doi:10.1080/10629360600903866
-
(2008)
Journal of Statistical Computation & Simulation
, vol.78
, Issue.1
, pp. 69-84
-
-
Demirtas, H.1
Freels, S.A.2
Yucel, R.M.3
-
10
-
-
41549095587
-
Imputing continuous data under some non-Gaussian distributions
-
H.Demirtas,, & D.Hedeker, (2008). Imputing continuous data under some non-Gaussian distributions. Statistica Neerlandica, 62, 193–205. doi:10.1111/j.1467-9574.2007.00377.x
-
(2008)
Statistica Neerlandica
, vol.62
, pp. 193-205
-
-
Demirtas, H.1
Hedeker, D.2
-
11
-
-
0018547019
-
Ridge regression and James-Stein estimation: Review and comments
-
N.R.Draper,, & R.C.V.Nostrand, (1979). Ridge regression and James-Stein estimation: Review and comments. Technometrics, 21, 451–466. doi:10.1080/00401706.1979.10489815
-
(1979)
Technometrics
, vol.21
, pp. 451-466
-
-
Draper, N.R.1
Nostrand, R.C.V.2
-
12
-
-
34548451124
-
How many imputations are really needed? Some practical clarifications of multiple imputation theory
-
J.W.Graham,, A.E.Olchowski,, & T.D.Gilreath, (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8, 206–213. doi:10.1007/s11121-007-0070-9
-
(2007)
Prevention Science
, vol.8
, pp. 206-213
-
-
Graham, J.W.1
Olchowski, A.E.2
Gilreath, T.D.3
-
13
-
-
34548648064
-
A comparison of three approaches to handling incomplete state-level data
-
J.S.Granberg-Rademacker, (2007). A comparison of three approaches to handling incomplete state-level data. State Politics & Policy Quarterly, 7(3), 325–338.
-
(2007)
State Politics & Policy Quarterly
, vol.7
, Issue.3
, pp. 325-338
-
-
Granberg-Rademacker, J.S.1
-
14
-
-
0001319409
-
A note on the transformation of chi-squared variables to normality
-
D.M.Hawkins,, & R.A.J.Wixley, (1986). A note on the transformation of chi-squared variables to normality. The American Statistician, 40, 296–298. doi:10.2307/2684608
-
(1986)
The American Statistician
, vol.40
, pp. 296-298
-
-
Hawkins, D.M.1
Wixley, R.A.J.2
-
15
-
-
84865806474
-
Multiple imputation using multivariate gh transformations
-
10.1080/02664763.2012.702268
-
Y.He,, & T.E.Raghunathan, (2012). Multiple imputation using multivariate gh transformations. Journal of Applied Statistics, 39, 2177–2198. doi:10.1080/02664763.2012.702268
-
(2012)
Journal of Applied Statistics
, vol.39
, pp. 2177-2198
-
-
He, Y.1
Raghunathan, T.E.2
-
16
-
-
0030343462
-
Distinguishing “missing at random” and “missing completely at random
-
D.F.Heitjan,, & S.Basu, (1996). Distinguishing “missing at random” and “missing completely at random”. The American Statistician, 50, 207–213. doi:10.2307/2684656
-
(1996)
The American Statistician
, vol.50
, pp. 207-213
-
-
Heitjan, D.F.1
Basu, S.2
-
17
-
-
17044439139
-
The quality of factor solutions in exploratory factor analysis: The influence of sample size, communality, and overdetermination
-
K.Y.Hogarty,, C.V.Hines,, J.D.Kromrey,, J.M.Ferron,, & K.R.Mumford, (2005). The quality of factor solutions in exploratory factor analysis: The influence of sample size, communality, and overdetermination. Educational and Psychological Measurement, 65, 202–226. doi:10.1177/0013164404267287
-
(2005)
Educational and Psychological Measurement
, vol.65
, pp. 202-226
-
-
Hogarty, K.Y.1
Hines, C.V.2
Kromrey, J.D.3
Ferron, J.M.4
Mumford, K.R.5
-
18
-
-
84962736698
-
-
Hoogendoorn, A., November 18). Mulitple [sic] imputation in a very simple situation: Just two variables. Retrieved from
-
Hoogendoorn, A. (2009, November 18). Mulitple [sic] imputation in a very simple situation: Just two variables. Retrieved from http://www.mail-archive.com/impute@listserv.it.northwestern.edu/msg00455.html
-
(2009)
-
-
-
19
-
-
0043109420
-
Sample size for multiple regression: Obtaining regression coefficients that are accurate, not simply significant
-
K.Kelley,, & S.E.Maxwell, (2003). Sample size for multiple regression: Obtaining regression coefficients that are accurate, not simply significant. Psychological Methods, 8, 305–321. doi:10.1037/1082-989X.8.3.305
-
(2003)
Psychological Methods
, vol.8
, pp. 305-321
-
-
Kelley, K.1
Maxwell, S.E.2
-
20
-
-
23244448334
-
Finite sample properties of multiple imputation estimators
-
J.K.Kim, (2004). Finite sample properties of multiple imputation estimators. The Annals of Statistics, 32, 766–783. doi:10.1214/009053604000000175
-
(2004)
The Annals of Statistics
, vol.32
, pp. 766-783
-
-
Kim, J.K.1
-
21
-
-
0141976273
-
Women’s political representation: The importance of ideology
-
S.Kunovich,, & P.M.Paxton, (2003). Women’s political representation: The importance of ideology. Social Forces, 82(1), 87–113. doi:10.1353/sof.2003.0105
-
(2003)
Social Forces
, vol.82
, Issue.1
, pp. 87-113
-
-
Kunovich, S.1
Paxton, P.M.2
-
22
-
-
0037811739
-
A degrees-of-freedom approximation in multiple imputation
-
S.Lipsitz,, M.Parzen,, & L.P.Zhao, (2002). A degrees-of-freedom approximation in multiple imputation. Journal of Statistical Computation and Simulation, 72, 309–318. doi:10.1080/00949650212848
-
(2002)
Journal of Statistical Computation and Simulation
, vol.72
, pp. 309-318
-
-
Lipsitz, S.1
Parzen, M.2
Zhao, L.P.3
-
23
-
-
0017201945
-
Inference about means from incomplete multivariate data
-
R.J.A.Little, (1976). Inference about means from incomplete multivariate data. Biometrika, 63, 593–604. doi:10.1093/biomet/63.3.593
-
(1976)
Biometrika
, vol.63
, pp. 593-604
-
-
Little, R.J.A.1
-
24
-
-
0342558089
-
Approximately calibrated small sample inference about means from bivariate normal data with missing values
-
R.J.A.Little, (1988). Approximately calibrated small sample inference about means from bivariate normal data with missing values. Computational Statistics & Data Analysis, 7, 161–178. doi:10.1016/0167-9473(88)90090-4
-
(1988)
Computational Statistics & Data Analysis
, vol.7
, pp. 161-178
-
-
Little, R.J.A.1
-
26
-
-
84965572693
-
The analysis of social science data with missing values
-
R.J.A.Little,, & D.B.Rubin, (1989). The analysis of social science data with missing values. Sociological Methods & Research, 18, 292–326. doi:10.1177/0049124189018002004
-
(1989)
Sociological Methods & Research
, vol.18
, pp. 292-326
-
-
Little, R.J.A.1
Rubin, D.B.2
-
28
-
-
0033413980
-
Sample size in factor analysis
-
R.C.MacCallum,, K.F.Widaman,, S.Zhang,, & S.Hong, (1999). Sample size in factor analysis. Psychological Methods, 4, 84–99. doi:10.1037/1082-989X.4.1.84
-
(1999)
Psychological Methods
, vol.4
, pp. 84-99
-
-
MacCallum, R.C.1
Widaman, K.F.2
Zhang, S.3
Hong, S.4
-
29
-
-
79959799592
-
Sample size in psychological research over the past 30 years
-
J.M.Marszalek,, C.Barber,, J.Kohlhart,, & C.B.Holmes, (2011). Sample size in psychological research over the past 30 years. Perceptual and Motor Skills, 112, 331–348. doi:10.2466/03.11.PMS.112.2.331-348
-
(2011)
Perceptual and Motor Skills
, vol.112
, pp. 331-348
-
-
Marszalek, J.M.1
Barber, C.2
Kohlhart, J.3
Holmes, C.B.4
-
30
-
-
84972537494
-
Multiple-imputation inferences with uncongenial sources of input
-
X.-L.Meng, (1994). Multiple-imputation inferences with uncongenial sources of input. Statistical Science, 9, 538–558.
-
(1994)
Statistical Science
, vol.9
, pp. 538-558
-
-
Meng, X.-L.1
-
31
-
-
0000542546
-
A test for equality of means of correlated variates with missing data on one response
-
D.F.Morrison, (1973). A test for equality of means of correlated variates with missing data on one response. Biometrika, 60, 101–105. doi:10.1093/biomet/60.1.101
-
(1973)
Biometrika
, vol.60
, pp. 101-105
-
-
Morrison, D.F.1
-
32
-
-
0345040656
-
How to use a Monte Carlo study to decide on sample size and determine power
-
L.K.Muthén,, & B.O.Muthén, (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 9, 599–620. doi:10.1207/S15328007SEM0904_8
-
(2002)
Structural Equation Modeling
, vol.9
, pp. 599-620
-
-
Muthén, L.K.1
Muthén, B.O.2
-
33
-
-
0002344593
-
A multivariate technique for multiply imputing missing values using a sequence of regression models
-
T.E.Raghunathan,, J.M.Lepkowski,, J.Van Hoewyk,, & P.W.Solenberger, (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27(1), 85–95.
-
(2001)
Survey Methodology
, vol.27
, Issue.1
, pp. 85-95
-
-
Raghunathan, T.E.1
Lepkowski, J.M.2
Van Hoewyk, J.3
Solenberger, P.W.4
-
34
-
-
34548452163
-
Small-sample degrees of freedom for multi-component significance tests with multiple imputation for missing data
-
J.P.Reiter, (2007). Small-sample degrees of freedom for multi-component significance tests with multiple imputation for missing data. Biometrika, 94, 502–508. doi:10.1093/biomet/asm028
-
(2007)
Biometrika
, vol.94
, pp. 502-508
-
-
Reiter, J.P.1
-
37
-
-
70449595827
-
A two-stage approach to missing data: Theory and application to auxiliary variables
-
V.Savalei,, & P.M.Bentler, (2009). A two-stage approach to missing data: Theory and application to auxiliary variables. Structural Equation Modeling, 16, 477–497. doi:10.1080/10705510903008238
-
(2009)
Structural Equation Modeling
, vol.16
, pp. 477-497
-
-
Savalei, V.1
Bentler, P.M.2
-
38
-
-
84864647620
-
On obtaining estimates of the fraction of missing information from full information maximum likelihood
-
V.Savalei,, & M.Rhemtulla, (2012). On obtaining estimates of the fraction of missing information from full information maximum likelihood. Structural Equation Modeling, 19, 477–494. doi:10.1080/10705511.2012.687669
-
(2012)
Structural Equation Modeling
, vol.19
, pp. 477-494
-
-
Savalei, V.1
Rhemtulla, M.2
-
43
-
-
18444377893
-
Teacher’s corner: How many imputations are needed? A comment on Hershberger and Fisher (2003)
-
10.1207/s15328007sem1202_8
-
P.T.von Hippel, (2005). Teacher’s corner: How many imputations are needed? A comment on Hershberger and Fisher (2003). Structural Equation Modeling, 12, 334–335. doi:10.1207/s15328007sem1202_8
-
(2005)
Structural Equation Modeling
, vol.12
, pp. 334-335
-
-
von Hippel, P.T.1
-
44
-
-
34548736509
-
Regression with missing Ys: An improved strategy for analyzing multiply imputed data
-
P.T.von Hippel, (2007). Regression with missing Ys: An improved strategy for analyzing multiply imputed data. Sociological Methodology, 37, 83–117. doi:10.1111/j.1467-9531.2007.00180.x
-
(2007)
Sociological Methodology
, vol.37
, pp. 83-117
-
-
von Hippel, P.T.1
-
45
-
-
69149105188
-
How to impute interactions, squares, and other transformed variables
-
P.T.von Hippel, (2009). How to impute interactions, squares, and other transformed variables. Sociological Methodology, 39, 265–291. doi:10.1111/j.1467-9531.2009.01215.x
-
(2009)
Sociological Methodology
, vol.39
, pp. 265-291
-
-
von Hippel, P.T.1
-
46
-
-
84885708491
-
The bias and efficiency of incomplete-data estimators in small univariate normal samples
-
P.T.von Hippel, (2013a). The bias and efficiency of incomplete-data estimators in small univariate normal samples. Sociological Methods & Research, 42, 531–558. doi:10.1177/0049124113494582
-
(2013)
Sociological Methods & Research
, vol.42
, pp. 531-558
-
-
von Hippel, P.T.1
-
47
-
-
84875526144
-
Should a normal imputation model be modified to impute skewed variables?
-
P.T.von Hippel, (2013b). Should a normal imputation model be modified to impute skewed variables? Sociological Methods & Research, 42(1), 105–138. doi:10.1177/0049124112464866
-
(2013)
Sociological Methods & Research
, vol.42
, Issue.1
, pp. 105-138
-
-
von Hippel, P.T.1
-
48
-
-
80053977924
-
A closer examination of three small-sample approximations to the multiple-imputation degrees of freedom
-
D.A.Wagstaff,, & O.Harel, (2011). A closer examination of three small-sample approximations to the multiple-imputation degrees of freedom. Stata Journal, 11, 403–419.
-
(2011)
Stata Journal
, vol.11
, pp. 403-419
-
-
Wagstaff, D.A.1
Harel, O.2
-
49
-
-
0011936489
-
Large-sample theory for parametric multiple imputation procedures
-
N.Wang,, & J.M.Robins, (1998). Large-sample theory for parametric multiple imputation procedures. Biometrika, 85, 935–948. doi:10.1093/biomet/85.4.935
-
(1998)
Biometrika
, vol.85
, pp. 935-948
-
-
Wang, N.1
Robins, J.M.2
-
50
-
-
84886428907
-
Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety
-
E.J.Wolf,, K.M.Harrington,, S.L.Clark,, & M.W.Miller, (2013). Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety. Educational and Psychological Measurement, 73, 913–934. doi:10.1177/0013164413495237
-
(2013)
Educational and Psychological Measurement
, vol.73
, pp. 913-934
-
-
Wolf, E.J.1
Harrington, K.M.2
Clark, S.L.3
Miller, M.W.4
-
51
-
-
36248964143
-
Structural equation modeling
-
Rao C.R., Sinharay S., (eds), Boston, MA: North Holland
-
K.-H.Yuan,, & P.M.Bentler, (2007). Structural equation modeling. In C.R.Rao & S.Sinharay (Eds.), Handbook of statistics: Vol. 26. Psychometrics (pp. 297–358). Boston, MA: North Holland.
-
(2007)
Handbook of statistics: Vol. 26. Psychometrics
, pp. 297-358
-
-
Yuan, K.-H.1
Bentler, P.M.2
-
52
-
-
57849140613
-
SEM with missing data and unknown population distributions using two-stage ML: Theory and its application
-
K.-H.Yuan,, & L.Lu, (2008). SEM with missing data and unknown population distributions using two-stage ML: Theory and its application. Multivariate Behavioral Research, 43, 621–652. doi:10.1080/00273170802490699
-
(2008)
Multivariate Behavioral Research
, vol.43
, pp. 621-652
-
-
Yuan, K.-H.1
Lu, L.2
-
53
-
-
84868121050
-
ML versus MI for missing data with violation of distribution conditions
-
K.-H.Yuan,, F.Yang-Wallentin,, & P.M.Bentler, (2012). ML versus MI for missing data with violation of distribution conditions. Sociological Methods & Research, 41, 598–629. doi:10.1177/0049124112460373
-
(2012)
Sociological Methods & Research
, vol.41
, pp. 598-629
-
-
Yuan, K.-H.1
Yang-Wallentin, F.2
Bentler, P.M.3
|