메뉴 건너뛰기




Volumn 78, Issue 1, 2010, Pages 40-64

A review of hot deck imputation for survey non-response

Author keywords

Item non response; Missing data; Multiple imputation; Variance estimation

Indexed keywords


EID: 77955807436     PISSN: 03067734     EISSN: 17515823     Source Type: Journal    
DOI: 10.1111/j.1751-5823.2010.00103.x     Document Type: Review
Times cited : (783)

References (95)
  • 1
    • 77950733379 scopus 로고    scopus 로고
    • The use of sample weights in hot deck imputation
    • Andridge RR, Little RJA. The use of sample weights in hot deck imputation. J. Official Stat. 2009, 25:21-36.
    • (2009) J. Official Stat. , vol.25 , pp. 21-36
    • Andridge, R.R.1    Little, R.J.A.2
  • 3
    • 33644851650 scopus 로고    scopus 로고
    • Doubly robust estimation in missing data and causal inference models
    • Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models. Biometrics 2005, 61:962-972.
    • (2005) Biometrics , vol.61 , pp. 962-972
    • Bang, H.1    Robins, J.M.2
  • 7
    • 3042807973 scopus 로고    scopus 로고
    • Imputations of missing values in practice: Results from imputations of serum cholesterol in 28 cohort studies
    • Barzi F, Woodward M. Imputations of missing values in practice: Results from imputations of serum cholesterol in 28 cohort studies. Amer. J. Epidemiol. 2004, 160:34-45.
    • (2004) Amer. J. Epidemiol. , vol.160 , pp. 34-45
    • Barzi, F.1    Woodward, M.2
  • 8
    • 33646680960 scopus 로고    scopus 로고
    • Adjusted jackknife for imputation under unequal probability sampling without replacement
    • Berger YG, Rao JNK. Adjusted jackknife for imputation under unequal probability sampling without replacement. J. Roy. Statist. Soc. Ser. B 2006, 68:531-547.
    • (2006) J. Roy. Statist. Soc. Ser. B , vol.68 , pp. 531-547
    • Berger, Y.G.1    Rao, J.N.K.2
  • 9
    • 33748316474 scopus 로고    scopus 로고
    • Match bias from earnings imputation in the current population survey: The case of imperfect matching
    • Bollinger CR, Hirsch BT. Match bias from earnings imputation in the current population survey: The case of imperfect matching. J. Labor Econ. 2006, 24:483-519.
    • (2006) J. Labor Econ. , vol.24 , pp. 483-519
    • Bollinger, C.R.1    Hirsch, B.T.2
  • 10
    • 33845483943 scopus 로고    scopus 로고
    • Bowman K, Chromy J, Hunter S, Martin P, Odom D. Eds., Rockville, MD, Substance Abuse and Mental Health Services Administration, Office of Applied Studies
    • 2003 NSDUH Methodological Resource Book 2005, Bowman KChromy JHunter SMartin POdom D. Eds., Rockville, MD, Substance Abuse and Mental Health Services Administration, Office of Applied Studies
    • (2005) 2003 NSDUH Methodological Resource Book
  • 12
    • 0030225794 scopus 로고    scopus 로고
    • Handling missing data in survey research
    • Brick JM, Kalton G. Handling missing data in survey research. Stat. Meth. Med. Res. 1996, 5:215-238.
    • (1996) Stat. Meth. Med. Res. , vol.5 , pp. 215-238
    • Brick, J.M.1    Kalton, G.2
  • 13
    • 27744462448 scopus 로고    scopus 로고
    • Variance estimation with hot deck imputation using a model
    • Brick JM, Kalton G, Kim JK. Variance estimation with hot deck imputation using a model. Surv. Methodol. 2004, 30:57-66.
    • (2004) Surv. Methodol. , vol.30 , pp. 57-66
    • Brick, J.M.1    Kalton, G.2    Kim, J.K.3
  • 15
    • 0033468068 scopus 로고    scopus 로고
    • Inference with survey data imputed by hot deck when imputed values are nonidentifiable
    • Chen J, Shao J. Inference with survey data imputed by hot deck when imputed values are nonidentifiable. Statist. Sinica. 1999, 9:361-384.
    • (1999) Statist. Sinica. , vol.9 , pp. 361-384
    • Chen, J.1    Shao, J.2
  • 16
    • 0041611508 scopus 로고    scopus 로고
    • Nearest neighbor imputation for survey data
    • Chen J, Shao J. Nearest neighbor imputation for survey data. J. Official. Stat. 2000, 16:113-141.
    • (2000) J. Official. Stat. , vol.16 , pp. 113-141
    • Chen, J.1    Shao, J.2
  • 17
    • 1842665177 scopus 로고    scopus 로고
    • Jackknife variance estimation for nearest-neighbor imputation
    • Chen J, Shao J. Jackknife variance estimation for nearest-neighbor imputation. J. Amer. Statist. Assoc. 2001, 96:260-269.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 260-269
    • Chen, J.1    Shao, J.2
  • 19
    • 77955789676 scopus 로고
    • Functional description of the generalized edit and imputation system
    • Tech. rep., Statistics Canada
    • Cotton C. Functional description of the generalized edit and imputation system. 1991, Tech. rep., Statistics Canada
    • (1991)
    • Cotton, C.1
  • 20
    • 0347963956 scopus 로고
    • The weighted sequential hot deck imputation procedure
    • Cox BG. The weighted sequential hot deck imputation procedure. ASA Proc. Section on Survey Res. Methods 1980, 721-726. pp
    • (1980) ASA Proc. Section on Survey Res. Methods , pp. 721-726
    • Cox, B.G.1
  • 21
    • 77955796875 scopus 로고
    • An evaluation of weighted hot deck imputation for unreported health care visits
    • Cox BG, Folsom RE. An evaluation of weighted hot deck imputation for unreported health care visits. ASA Proc. Section on Survey Res. Methods 1981, 412-417. pp
    • (1981) ASA Proc. Section on Survey Res. Methods , pp. 412-417
    • Cox, B.G.1    Folsom, R.E.2
  • 23
    • 21344497888 scopus 로고
    • Missing data, imputation, and the bootstrap
    • Efron B. Missing data, imputation, and the bootstrap. J. Amer. Statist. Assoc. 1994, 89:463-475.
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 463-475
    • Efron, B.1
  • 28
    • 0030557655 scopus 로고    scopus 로고
    • Alternative paradigms for the analysis of imputed survey data
    • Fay RE. Alternative paradigms for the analysis of imputed survey data. J. Amer. Statist. Assoc. 1996, 91:490-498.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 490-498
    • Fay, R.E.1
  • 29
    • 33744565781 scopus 로고    scopus 로고
    • Theory and application of nearest neighbor imputation in Census 2000
    • Fay RE. Theory and application of nearest neighbor imputation in Census 2000. ASA Proc. Section on Survey Res. Methods 1999, 112-121 pp
    • (1999) ASA Proc. Section on Survey Res. Methods , pp. 112-121
    • Fay, R.E.1
  • 30
    • 1542305821 scopus 로고
    • A systematic approach to automatic edit and imputation
    • Fellegi IP, Holt D. A systematic approach to automatic edit and imputation. J. Amer. Statist. Assoc. 1976, 71:17-35.
    • (1976) J. Amer. Statist. Assoc. , vol.71 , pp. 17-35
    • Fellegi, I.P.1    Holt, D.2
  • 31
    • 0000238915 scopus 로고
    • An overview of hot-deck procedures
    • Madow WG, Olkin I, Rubin DB. Eds., New York, Academic Press
    • Ford BL. An overview of hot-deck procedures. Incomplete Data in Sample Surveys 1983, Vol. 2:185-207. Madow WGOlkin IRubin DB. Eds. New York, Academic Press
    • (1983) Incomplete Data in Sample Surveys , vol.2 , pp. 185-207
    • Ford, B.L.1
  • 33
    • 34247248355 scopus 로고    scopus 로고
    • On the construction of imputation classes in surveys
    • Haziza D, Beaumont JF. On the construction of imputation classes in surveys. Int. Statist. Rev. 2007, 75:25-43.
    • (2007) Int. Statist. Rev. , vol.75 , pp. 25-43
    • Haziza, D.1    Beaumont, J.F.2
  • 34
    • 40549087193 scopus 로고    scopus 로고
    • A nonresponse model approach to inference under imputation for missing survey data
    • Haziza D, Rao JNK. A nonresponse model approach to inference under imputation for missing survey data. Surv. Method. 2006, 32:53-64.
    • (2006) Surv. Method. , vol.32 , pp. 53-64
    • Haziza, D.1    Rao, J.N.K.2
  • 35
    • 0002467683 scopus 로고
    • Multiple imputation for the fatal accident reporting system
    • Heitjan DF, Little RJA. Multiple imputation for the fatal accident reporting system. Appl. Stat. 1991, 40:13-29.
    • (1991) Appl. Stat. , vol.40 , pp. 13-29
    • Heitjan, D.F.1    Little, R.J.A.2
  • 39
    • 0001876297 scopus 로고
    • The treatment of missing survey data
    • Kalton G, Kasprzyk D. The treatment of missing survey data. Surv. Method. 1986, 12:1-16.
    • (1986) Surv. Method. , vol.12 , pp. 1-16
    • Kalton, G.1    Kasprzyk, D.2
  • 40
    • 0000661829 scopus 로고
    • An exploratory technique for investigating large quantities of categorical data
    • Kass GV. An exploratory technique for investigating large quantities of categorical data. Appl. Stat. 1980, 29:119-127.
    • (1980) Appl. Stat. , vol.29 , pp. 119-127
    • Kass, G.V.1
  • 42
    • 24344487552 scopus 로고    scopus 로고
    • A note on approximate bayesian bootstrap
    • Kim JK. A note on approximate bayesian bootstrap. Biometrika 2002, 89:470-477.
    • (2002) Biometrika , vol.89 , pp. 470-477
    • Kim, J.K.1
  • 43
    • 33646696129 scopus 로고    scopus 로고
    • On the bias of the multiple-imputation variance estimator in survey sampling
    • Kim JK, Brick JM, Fuller WA, Kalton G. On the bias of the multiple-imputation variance estimator in survey sampling. J. Roy. Statist. Soc. Ser. B 2006, 68:509-521.
    • (2006) J. Roy. Statist. Soc. Ser. B , vol.68 , pp. 509-521
    • Kim, J.K.1    Brick, J.M.2    Fuller, W.A.3    Kalton, G.4
  • 44
    • 24944511252 scopus 로고    scopus 로고
    • Fractional hot deck imputation
    • Kim JK, Fuller W. Fractional hot deck imputation. Biometrika 2004, 91:559-578.
    • (2004) Biometrika , vol.91 , pp. 559-578
    • Kim, J.K.1    Fuller, W.2
  • 46
    • 77955778696 scopus 로고
    • What do we really know about wages: The importance of non-reporting and census imputation
    • Tech. rep., Rand Corporation, Santa Monica, CA
    • Lillard L, Smith JP, Welch F. What do we really know about wages: The importance of non-reporting and census imputation. 1982, Tech. rep., Rand Corporation, Santa Monica, CA
    • (1982)
    • Lillard, L.1    Smith, J.P.2    Welch, F.3
  • 47
    • 38849196841 scopus 로고    scopus 로고
    • A hot-deck multiple imputation procedure for gaps in longitudindal data on recurrent events
    • Little RJ, Yosef M, Cain KC, Nan B, Harlow SD. A hot-deck multiple imputation procedure for gaps in longitudindal data on recurrent events. Stat. Med. 2008, 27:103-120.
    • (2008) Stat. Med. , vol.27 , pp. 103-120
    • Little, R.J.1    Yosef, M.2    Cain, K.C.3    Nan, B.4    Harlow, S.D.5
  • 48
    • 0000497256 scopus 로고
    • Survey nonresponse adjustments for estimates of means
    • Little RJA. Survey nonresponse adjustments for estimates of means. Int. Statist. Rev. 1986, 54:139-157.
    • (1986) Int. Statist. Rev. , vol.54 , pp. 139-157
    • Little, R.J.A.1
  • 49
    • 84952497143 scopus 로고
    • Missing-data adjustments in large surveys
    • Little RJA. Missing-data adjustments in large surveys. J. Buss. Econ. Stat. 1988, 6:287-296.
    • (1988) J. Buss. Econ. Stat. , vol.6 , pp. 287-296
    • Little, R.J.A.1
  • 50
    • 8644254410 scopus 로고    scopus 로고
    • Robust likelihood-based analysis of multivariate data with missing values
    • Little RJA, An H. Robust likelihood-based analysis of multivariate data with missing values. Statist. Sinica. 2004, 14:949-968.
    • (2004) Statist. Sinica. , vol.14 , pp. 949-968
    • Little, R.J.A.1    An, H.2
  • 52
    • 0038025667 scopus 로고    scopus 로고
    • On weighting the rates in non-response weights
    • Little RJA, Vartivarian S. On weighting the rates in non-response weights. Stat. Med. 2003, 22:1589-1599.
    • (2003) Stat. Med. , vol.22 , pp. 1589-1599
    • Little, R.J.A.1    Vartivarian, S.2
  • 53
    • 27744441565 scopus 로고    scopus 로고
    • Does weighting for nonresponse increase the variance of survey means
    • Little RJA, Vartivarian S. Does weighting for nonresponse increase the variance of survey means. Surv. Method. 2005, 31:161-168.
    • (2005) Surv. Method. , vol.31 , pp. 161-168
    • Little, R.J.A.1    Vartivarian, S.2
  • 54
    • 0345948567 scopus 로고    scopus 로고
    • Large-scale imputation for complex surveys
    • New York, Wiley
    • Marker DA, Judkins DR, Winglee M. Large-scale imputation for complex surveys. Survey Nonresponse 2002, 329-341 New York, Wiley
    • (2002) Survey Nonresponse , pp. 329-341
    • Marker, D.A.1    Judkins, D.R.2    Winglee, M.3
  • 55
    • 84972537494 scopus 로고
    • Multiple imputation inferences with uncongenial sources of input (with discussion)
    • Meng XL. Multiple imputation inferences with uncongenial sources of input (with discussion). Stat. Sci. 1994, 9:538-573.
    • (1994) Stat. Sci. , vol.9 , pp. 538-573
    • Meng, X.L.1
  • 56
    • 3042682152 scopus 로고    scopus 로고
    • NCES statistical standards
    • National Center for Education Statistics, Tech. rep., U.S. Department of Education
    • NCES statistical standards. 2002, National Center for Education Statistics, Tech. rep., U.S. Department of Education
    • (2002)
  • 57
    • 0000628115 scopus 로고
    • Weighting adjustments for unit nonresponse
    • Madow WG, Olkin I, Rubin DB. Eds., New York, Academic Press
    • Oh HL, Scheuren FJ. Weighting adjustments for unit nonresponse. Incomplete Data in Sample Surveys 1983, Vol. 2:143-184. Madow WG, Olkin IRubin DB. Eds., New York, Academic Press
    • (1983) Incomplete Data in Sample Surveys , vol.2 , pp. 143-184
    • Oh, H.L.1    Scheuren, F.J.2
  • 59
    • 0037203136 scopus 로고    scopus 로고
    • Use of the mean, hot deck and multiple imputation techniques to predict outcome in intensive care unit patients in colombia
    • Perez A, Dennis RJ, Gil JFA, Rondon MA. Use of the mean, hot deck and multiple imputation techniques to predict outcome in intensive care unit patients in colombia. Stat. Med. 2002, 21:3885-3896.
    • (2002) Stat. Med. , vol.21 , pp. 3885-3896
    • Perez, A.1    Dennis, R.J.2    Gil, J.F.A.3    Rondon, M.A.4
  • 60
    • 0013118070 scopus 로고
    • Imputation methodology: Total survey error
    • Madow WG, Olkin I, Rubin DB. Eds., New York, Academic Press
    • Platek R, Gray GB. Imputation methodology: Total survey error. Incomplete Data in Sample Surveys 1983, Vol. 2:249-333. Madow WG, Olkin IRubin DB. Eds., New York, Academic Press
    • (1983) Incomplete Data in Sample Surveys , vol.2 , pp. 249-333
    • Platek, R.1    Gray, G.B.2
  • 61
    • 35748932852 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0
    • R: A Language and Environment for Statistical Computing 2007, http://www.R-project.org, R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0
    • (2007) R: A Language and Environment for Statistical Computing
  • 62
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • Raghunathan TE, Lepkowski JM, Van Hoewyk J, Solenberger P. A multivariate technique for multiply imputing missing values using a sequence of regression models. Surv. Method. 2001, 21:85-95.
    • (2001) Surv. Method. , vol.21 , pp. 85-95
    • Raghunathan, T.E.1    Lepkowski, J.M.2    Van Hoewyk, J.3    Solenberger, P.4
  • 63
    • 33744622496 scopus 로고    scopus 로고
    • Estimation with nearest neighbor imputation at Statistics Canada
    • Rancourt E. Estimation with nearest neighbor imputation at Statistics Canada. ASA Proc. Section on Survey Res. Methods 1999, 131-138. pp
    • (1999) ASA Proc. Section on Survey Res. Methods , pp. 131-138
    • Rancourt, E.1
  • 65
    • 0346937787 scopus 로고    scopus 로고
    • On variance estimation with imputed survey data
    • Rao JNK. On variance estimation with imputed survey data. J. Amer. Stat. Assoc. 1996, 91:499-506.
    • (1996) J. Amer. Stat. Assoc. , vol.91 , pp. 499-506
    • Rao, J.N.K.1
  • 66
    • 0000974584 scopus 로고
    • Jackknife variance estimation with survey data under hot deck imputation
    • Rao JNK, Shao J. Jackknife variance estimation with survey data under hot deck imputation. Biometrika 1992, 79:811-822.
    • (1992) Biometrika , vol.79 , pp. 811-822
    • Rao, J.N.K.1    Shao, J.2
  • 67
    • 84888862680 scopus 로고
    • Estimation of regression coefficients when some regressors and not always observed
    • Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors and not always observed. J. Amer. Statist. Assoc. 1994, 89:846-866.
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 846-866
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 68
    • 84950421496 scopus 로고
    • Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
    • Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Amer. Statist. Assoc. 1995, 90:106-121.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 106-121
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 69
    • 0000555875 scopus 로고    scopus 로고
    • Inference for imputation estimators
    • Robins JM, Wang N. Inference for imputation estimators. Biometrika 2000, 87:113-124.
    • (2000) Biometrika , vol.87 , pp. 113-124
    • Robins, J.M.1    Wang, N.2
  • 70
    • 0017133178 scopus 로고
    • Inference and missing data (with discussion)
    • Rubin DB. Inference and missing data (with discussion). Biometrika 1976, 63:581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 71
    • 0002608867 scopus 로고
    • Multiple imputation in sample surveys - a phenomenological Bayesian approach to nonresponse
    • Rubin DB. Multiple imputation in sample surveys - a phenomenological Bayesian approach to nonresponse. ASA Proc. Section on Survey Res. Methods 1978, 20-34. pp
    • (1978) ASA Proc. Section on Survey Res. Methods , pp. 20-34
    • Rubin, D.B.1
  • 72
    • 0000135972 scopus 로고
    • The bayesian bootstrap
    • Rubin DB. The bayesian bootstrap. Ann. Stat. 1981, 9:130-134.
    • (1981) Ann. Stat. , vol.9 , pp. 130-134
    • Rubin, D.B.1
  • 73
    • 84940952808 scopus 로고
    • Statistical matching using file concatenation with adjusted weights and multiple imputations
    • Rubin DB. Statistical matching using file concatenation with adjusted weights and multiple imputations. J. Bus. Econ. Stat. 1986, 4:87-94.
    • (1986) J. Bus. Econ. Stat. , vol.4 , pp. 87-94
    • Rubin, D.B.1
  • 75
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+ years
    • Rubin DB. Multiple imputation after 18+ years. J. Amer. Stat. Assoc. 1996, 91:473-489.
    • (1996) J. Amer. Stat. Assoc. , vol.91 , pp. 473-489
    • Rubin, D.B.1
  • 76
    • 84950918760 scopus 로고
    • Multiple imputation for interval estimation from simple random samples with ignorable non-response
    • Rubin DB, Schenker N. Multiple imputation for interval estimation from simple random samples with ignorable non-response. J. Amer. Stat. Assoc. 1986, 81:366-374.
    • (1986) J. Amer. Stat. Assoc. , vol.81 , pp. 366-374
    • Rubin, D.B.1    Schenker, N.2
  • 77
    • 0348186309 scopus 로고    scopus 로고
    • A repeated half-sample bootstrap and balanced repeated replications for randomly imputed data
    • Saigo H, Shao J, Sitter RR. A repeated half-sample bootstrap and balanced repeated replications for randomly imputed data. Surv. Method. 2001, 27:189-196.
    • (2001) Surv. Method. , vol.27 , pp. 189-196
    • Saigo, H.1    Shao, J.2    Sitter, R.R.3
  • 78
    • 0012424407 scopus 로고
    • Methods for estimating the precision of survey estimates when imputation has been used
    • Särndal CE. Methods for estimating the precision of survey estimates when imputation has been used. Surv. Method. 1992, 18:241-252.
    • (1992) Surv. Method. , vol.18 , pp. 241-252
    • Särndal, C.E.1
  • 79
    • 0030207783 scopus 로고    scopus 로고
    • Partially parametric techniques for multiple imputation
    • Schenker N, Taylor JMG. Partially parametric techniques for multiple imputation. Comput. Statist. Data Anal. 1996, 22:425-446.
    • (1996) Comput. Statist. Data Anal. , vol.22 , pp. 425-446
    • Schenker, N.1    Taylor, J.M.G.2
  • 80
    • 33846051968 scopus 로고    scopus 로고
    • Approximate balanced half sample and repeated replication methods for imputed survey data
    • Shao J, Chen J. Approximate balanced half sample and repeated replication methods for imputed survey data. Sankhya Ser. B 1999, 61:187-201.
    • (1999) Sankhya Ser. B , vol.61 , pp. 187-201
    • Shao, J.1    Chen, J.2
  • 81
    • 0032371445 scopus 로고    scopus 로고
    • Balanced repeated replication for stratified multistage survey data under imputation
    • Shao J, Chen Y, Chen Y. Balanced repeated replication for stratified multistage survey data under imputation. J. Amer. Stat. Assoc. 1998, 93:819-831.
    • (1998) J. Amer. Stat. Assoc. , vol.93 , pp. 819-831
    • Shao, J.1    Chen, Y.2    Chen, Y.3
  • 82
    • 0030336376 scopus 로고    scopus 로고
    • Bootstrap for imputed survey data
    • Shao J, Sitter RR. Bootstrap for imputed survey data. J. Amer. Stat. Assoc. 1996, 91:1278-1288.
    • (1996) J. Amer. Stat. Assoc. , vol.91 , pp. 1278-1288
    • Shao, J.1    Sitter, R.R.2
  • 83
    • 0442277963 scopus 로고    scopus 로고
    • Variance estimation for survey data with composite imputation and nonnegligible sampling fractions
    • Shao J, Steel P. Variance estimation for survey data with composite imputation and nonnegligible sampling fractions. J. Amer. Stat. Assoc. 1999, 94:254-265.
    • (1999) J. Amer. Stat. Assoc. , vol.94 , pp. 254-265
    • Shao, J.1    Steel, P.2
  • 84
    • 0035998827 scopus 로고    scopus 로고
    • Sample correlation coefficients based on survey data under regression imputation
    • Shao J, Wang H. Sample correlation coefficients based on survey data under regression imputation. J. Amer. Stat. Assoc. 2002, 97:544-552.
    • (2002) J. Amer. Stat. Assoc. , vol.97 , pp. 544-552
    • Shao, J.1    Wang, H.2
  • 85
    • 38849125474 scopus 로고    scopus 로고
    • Multiple imputation using an iterative hot-deck with distance-based donor selection
    • Siddique J, Belin TR. Multiple imputation using an iterative hot-deck with distance-based donor selection. Stat. Med. 2008, 27:83-102.
    • (2008) Stat. Med. , vol.27 , pp. 83-102
    • Siddique, J.1    Belin, T.R.2
  • 86
    • 0009956261 scopus 로고
    • The maximum likelihood method for non-response in sample surveys
    • Srivastava MS, Carter EM. The maximum likelihood method for non-response in sample surveys. Surv. Method. 1986, 12:61-72.
    • (1986) Surv. Method. , vol.12 , pp. 61-72
    • Srivastava, M.S.1    Carter, E.M.2
  • 87
    • 21844466220 scopus 로고    scopus 로고
    • A comparison of imputation methods in a longitudinal randomized clinical trial
    • Tang L, Song J, Belin TR, Unutzer J. A comparison of imputation methods in a longitudinal randomized clinical trial. Stat. Med. 2005, 24:2111-2128.
    • (2005) Stat. Med. , vol.24 , pp. 2111-2128
    • Tang, L.1    Song, J.2    Belin, T.R.3    Unutzer, J.4
  • 88
    • 0036126816 scopus 로고    scopus 로고
    • Attrition in longitudinal studies: How to deal with missing data
    • Twisk J, de Vente W. Attrition in longitudinal studies: How to deal with missing data. J. Clin. Epidemiol. 2002, 55:329-337.
    • (2002) J. Clin. Epidemiol. , vol.55 , pp. 329-337
    • Twisk, J.1    de Vente, W.2
  • 89
    • 77955833509 scopus 로고    scopus 로고
    • Technical paper 63
    • U.S. Bureau of the Census, Tech. rep., U.S. Government Printing Office
    • Technical paper 63. 2002, U.S. Bureau of the Census, Tech. rep., U.S. Government Printing Office
    • (2002)
  • 90
    • 77955824256 scopus 로고    scopus 로고
    • A comparison study of acs if-then-else, nim, discrete edit and imputation systems using acs data
    • U.S. Bureau of the Census, Madrid, Spain
    • A comparison study of acs if-then-else, nim, discrete edit and imputation systems using acs data. UN/ECE Work Session of Statistical Data Editing 2003, U.S. Bureau of the Census, Madrid, Spain
    • (2003) UN/ECE Work Session of Statistical Data Editing
  • 91
    • 0003613384 scopus 로고
    • Plan and operation of the third national health and nutrition examination survey, 1988-94
    • U.S. Department of Health and Human Services, Tech. rep., National Center for Health Statistics, Centers for Disease Control and Prevention
    • Plan and operation of the third national health and nutrition examination survey, 1988-94. 1994, U.S. Department of Health and Human Services, Tech. rep., National Center for Health Statistics, Centers for Disease Control and Prevention
    • (1994)
  • 92
    • 77955804377 scopus 로고    scopus 로고
    • Third national health and nutrition examination survey (nhanes iii, 1988-1994): Multiply imputed data set
    • U.S. Department of Health and Human Services, cd-rom, series 11, no. 7a. Tech. rep., National Center for Health Statistics, Centers for Disease Control and Prevention
    • Third national health and nutrition examination survey (nhanes iii, 1988-1994): Multiply imputed data set. 2001, U.S. Department of Health and Human Services, cd-rom, series 11, no. 7a. Tech. rep., National Center for Health Statistics, Centers for Disease Control and Prevention
    • (2001)
  • 93
    • 0039137139 scopus 로고    scopus 로고
    • Flexible multivariate imputation by MICE
    • Tech. rep., TNO Prevention and Health, Leiden
    • Van Buuren S, Oudshoorn CGM. Flexible multivariate imputation by MICE. 1999, Tech. rep., TNO Prevention and Health, Leiden
    • (1999)
    • Van Buuren, S.1    Oudshoorn, C.G.M.2
  • 94
    • 77951829809 scopus 로고
    • Weighted hot-deck imputation of medical expenditures based on a record check subsample
    • Williams RL, Folsom RE. Weighted hot-deck imputation of medical expenditures based on a record check subsample. ASA Proc. Section on Survey Res. Methods 1981, 406-411. pp
    • (1981) ASA Proc. Section on Survey Res. Methods , pp. 406-411
    • Williams, R.L.1    Folsom, R.E.2
  • 95
    • 63049106411 scopus 로고    scopus 로고
    • Extensions of the penalized spline of propensity prediction method of imputation
    • Zhang G, Little RJA. Extensions of the penalized spline of propensity prediction method of imputation. Biometrics 2009, 65:911-918.
    • (2009) Biometrics , vol.65 , pp. 911-918
    • Zhang, G.1    Little, R.J.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.