-
1
-
-
43449100377
-
Diagnostics for multivariate imputations
-
Abayomi, K., Gelman, A. E. and Levy, M. 2008. Diagnostics for multivariate imputations. J. R. Stat. Soc. Ser. C (Appl. Stat.), 57: 273-291.
-
(2008)
J. R. Stat. Soc. Ser. C (Appl. Stat.)
, vol.57
, pp. 273-291
-
-
Abayomi, K.1
Gelman, A.E.2
Levy, M.3
-
2
-
-
59849109653
-
Bayesian estimation of quantile distributions
-
Allingham, D., King, R. A.R. and Mengersen, K. L. 2009. Bayesian estimation of quantile distributions. Stat. Comput., 19: 189-201.
-
(2009)
Stat. Comput.
, vol.19
, pp. 189-201
-
-
Allingham, D.1
King, R.A.R.2
Mengersen, K.L.3
-
3
-
-
34347407592
-
Multiple imputation of discrete and continuous data by fully conditional specification
-
van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res., 16: 219-242.
-
(2007)
Stat. Methods Med. Res.
, vol.16
, pp. 219-242
-
-
van Buuren, S.1
-
4
-
-
60749102392
-
Multiple imputation under the generalized lambda distribution
-
Demirtas, H. 2008. Multiple imputation under the generalized lambda distribution. J. Biopharm. Statist., 19: 77-89.
-
(2008)
J. Biopharm. Statist.
, vol.19
, pp. 77-89
-
-
Demirtas, H.1
-
5
-
-
38349186156
-
Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment
-
Demirtas, H., Freels, S. A. and Yucel, R. M. 2008. Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment. J. Stat. Comput. Simul., 78: 69-84.
-
(2008)
J. Stat. Comput. Simul.
, vol.78
, pp. 69-84
-
-
Demirtas, H.1
Freels, S.A.2
Yucel, R.M.3
-
6
-
-
33750929708
-
Comment to 'Tukey's gh distribution for multiple imputation' by He and Raghunathan
-
Demirtas, H. and Hedeker, D. 2006. Comment to 'Tukey's gh distribution for multiple imputation' by He and Raghunathan. Amer. Statist., 60: 348
-
(2006)
Amer. Statist.
, vol.60
, pp. 348
-
-
Demirtas, H.1
Hedeker, D.2
-
7
-
-
41549095587
-
Imputing continuous data under some non-Gaussian distributions
-
Demirtas, H. and Hedeker, D. 2008. Imputing continuous data under some non-Gaussian distributions. Statist. Neerlandica, 62: 193-205.
-
(2008)
Statist. Neerlandica
, vol.62
, pp. 193-205
-
-
Demirtas, H.1
Hedeker, D.2
-
9
-
-
5044252133
-
Large wind speeds: Modeling and outlier detection
-
Dupuis, D. J. and Field, C. A. 2003. Large wind speeds: Modeling and outlier detection. J. Agric. Biol. Environ. Stat., 9: 105-121.
-
(2003)
J. Agric. Biol. Environ. Stat.
, vol.9
, pp. 105-121
-
-
Dupuis, D.J.1
Field, C.A.2
-
11
-
-
1542378393
-
Using the gh distribution to model extreme wind speeds
-
Field, C. A. 2004. Using the gh distribution to model extreme wind speeds. J. Statist. Plann. Inference, 122: 15-22.
-
(2004)
J. Statist. Plann. Inference
, vol.122
, pp. 15-22
-
-
Field, C.A.1
-
12
-
-
33344464406
-
Multivariate g-and-h distribution
-
Field, C. A. and Genton, M. G. 2006. Multivariate g-and-h distribution. Technometrics, 48: 104-111.
-
(2006)
Technometrics
, vol.48
, pp. 104-111
-
-
Field, C.A.1
Genton, M.G.2
-
13
-
-
70350678979
-
Generalized Tukey-type distributions with application to financial and teletraffic data
-
Fischer, M. 2010. Generalized Tukey-type distributions with application to financial and teletraffic data. Statist. Papers, 51: 41-56.
-
(2010)
Statist. Papers
, vol.51
, pp. 41-56
-
-
Fischer, M.1
-
14
-
-
33847251099
-
Tukey-type distribution in the context of financial data
-
Fischer, M., Horn, A. and Klein, A. 2007. Tukey-type distribution in the context of financial data. Comm. Statist. Theory Methods, 36: 23-35.
-
(2007)
Comm. Statist. Theory Methods
, vol.36
, pp. 23-35
-
-
Fischer, M.1
Horn, A.2
Klein, A.3
-
15
-
-
84950453304
-
Sampling-based approaches to calculating marginal densities
-
Gelfand, A. E. and Smith, A. F.M. 1990. Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc., 85: 398-409.
-
(1990)
J. Amer. Statist. Assoc.
, vol.85
, pp. 398-409
-
-
Gelfand, A.E.1
Smith, A.F.M.2
-
16
-
-
15044358532
-
Multiple imputation for model checking: Completed-data plots with missing and latent data
-
Gelman, A. E., Mechelen, I. V., Verbeke, G., Heitjan, D. F. and Meulders, M. 2005. Multiple imputation for model checking: Completed-data plots with missing and latent data. Biometrics, 61: 74-85.
-
(2005)
Biometrics
, vol.61
, pp. 74-85
-
-
Gelman, A.E.1
Mechelen, I.V.2
Verbeke, G.3
Heitjan, D.F.4
Meulders, M.5
-
17
-
-
84972492387
-
Inference from iterative simulation using multiple sequences (with discussion)
-
Gelman, A. E. and Rubin, D. B. 1992. Inference from iterative simulation using multiple sequences (with discussion). Statist. Sci., 7: 457-511.
-
(1992)
Statist. Sci.
, vol.7
, pp. 457-511
-
-
Gelman, A.E.1
Rubin, D.B.2
-
19
-
-
34250686456
-
Multiple imputation: Review of theory, implementation, and software
-
Harel, O. and Zhou, X. H. 2007. Multiple imputation: Review of theory, implementation, and software. Stat. Med., 26: 3057-3077.
-
(2007)
Stat. Med.
, vol.26
, pp. 3057-3077
-
-
Harel, O.1
Zhou, X.H.2
-
21
-
-
33746050373
-
Bayesian estimation of g-and-k distributions using MCMC
-
Haynes, M. and Mengersen, K. 2005. Bayesian estimation of g-and-k distributions using MCMC. Comput. Statist., 20: 7-30.
-
(2005)
Comput. Statist.
, vol.20
, pp. 7-30
-
-
Haynes, M.1
Mengersen, K.2
-
22
-
-
53249156451
-
Generalized control charts for nonnormal data using g-and-k distributions
-
Haynes, M., Mengersen, K. and Rippon, P. 2008. Generalized control charts for nonnormal data using g-and-k distributions. Comm. Statist. Simulation Comput., 37: 1881-1903.
-
(2008)
Comm. Statist. Simulation Comput.
, vol.37
, pp. 1881-1903
-
-
Haynes, M.1
Mengersen, K.2
Rippon, P.3
-
23
-
-
33747517213
-
Tukey's gh distribution for multiple imputation
-
He, Y. and Raghunathan, T. E. 2006. Tukey's gh distribution for multiple imputation. Amer. Statist., 60: 251-256.
-
(2006)
Amer. Statist.
, vol.60
, pp. 251-256
-
-
He, Y.1
Raghunathan, T.E.2
-
24
-
-
84865832802
-
On the performance of sequential regression multiple imputation methods with non normal error distributions
-
He, Y. and Raghunathan, T. E. 2009. On the performance of sequential regression multiple imputation methods with non normal error distributions. Comm. Statist. Simulation Comput., 38: 856-883.
-
(2009)
Comm. Statist. Simulation Comput.
, vol.38
, pp. 856-883
-
-
He, Y.1
Raghunathan, T.E.2
-
25
-
-
0002449934
-
Summarizing shape numerically: The g-and-h distributions
-
In: Hoaglin D. C., Mosteller F., Tukey J. W., editors New York: Wiley
-
Hoaglin, D. C. 1985. "Summarizing shape numerically: The g-and-h distributions". In Exploring Data Tables, Trends, and Shapes, Edited by: Hoaglin, D. C., Mosteller, F. and Tukey, J. W. 461-513. New York: Wiley.
-
(1985)
Exploring Data Tables, Trends, and Shapes
, pp. 461-513
-
-
Hoaglin, D.C.1
-
26
-
-
8644254410
-
Robust likelihood-based analysis of multivariate data with missing values
-
Little, R. J.A. and An, H. 2004. Robust likelihood-based analysis of multivariate data with missing values. Statist. Sinica, 14: 949-968.
-
(2004)
Statist. Sinica
, vol.14
, pp. 949-968
-
-
Little, R.J.A.1
An, H.2
-
28
-
-
0000471962
-
Some properties of the Tukey g and h family of distributions
-
Martinez, J. and Iglewicz, B. 1984. Some properties of the Tukey g and h family of distributions. Comm. Statist. Theory Methods, 13: 353-369.
-
(1984)
Comm. Statist. Theory Methods
, vol.13
, pp. 353-369
-
-
Martinez, J.1
Iglewicz, B.2
-
29
-
-
0000978375
-
Modeling skewness and kurtosis in the London stock exchange FT-SE index return distributions
-
Mills, T. C. 1995. Modeling skewness and kurtosis in the London stock exchange FT-SE index return distributions. Statistician, 44: 323-332.
-
(1995)
Statistician
, vol.44
, pp. 323-332
-
-
Mills, T.C.1
-
31
-
-
0002344593
-
A multivariate technique for multiply imputing missing values using a sequence of regression models
-
Raghunathan, T. E., Lepkowski, J. M., VanHoewyk, J. and Solenberger, P. 2001. A multivariate technique for multiply imputing missing values using a sequence of regression models. Surv. Methodol., 27: 85-95.
-
(2001)
Surv. Methodol.
, vol.27
, pp. 85-95
-
-
Raghunathan, T.E.1
Lepkowski, J.M.2
VanHoewyk, J.3
Solenberger, P.4
-
32
-
-
0141791122
-
Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions
-
Rayner, G. and MacGillivary, H. 2002. Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions. Stat. Comput., 12: 55-75.
-
(2002)
Stat. Comput.
, vol.12
, pp. 55-75
-
-
Rayner, G.1
MacGillivary, H.2
-
33
-
-
26444574824
-
Early experience with pay-for-performance, from concept to practice
-
Rosenthal, M. B., Frank, R. G., Zhonghe, L. and Epstein, A. M. 2005. Early experience with pay-for-performance, from concept to practice. J. Am. Med. Assoc., 294: 1788-1793.
-
(2005)
J. Am. Med. Assoc.
, vol.294
, pp. 1788-1793
-
-
Rosenthal, M.B.1
Frank, R.G.2
Zhonghe, L.3
Epstein, A.M.4
-
34
-
-
0017133178
-
Inference and missing data
-
Rubin, D. B. 1976. Inference and missing data. Biometrika, 63: 581-592.
-
(1976)
Biometrika
, vol.63
, pp. 581-592
-
-
Rubin, D.B.1
-
37
-
-
84950758368
-
The calculation of posterior distributions by data augmentation (with discussion)
-
Tanner, M. A. and Wong, W. H. 1987. The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Statist. Assoc., 82: 528-550.
-
(1987)
J. Amer. Statist. Assoc.
, vol.82
, pp. 528-550
-
-
Tanner, M.A.1
Wong, W.H.2
-
38
-
-
84865832204
-
-
North Dartmouth, MA: NSF-sponsored regional research conference at Southeastern Massachusetts University
-
Tukey, J. W. Modern techniques in data analysis. North Dartmouth, MA: NSF-sponsored regional research conference at Southeastern Massachusetts University.
-
Modern techniques in data analysis
-
-
Tukey, J.W.1
-
39
-
-
38249002469
-
A note on the multivariate Box-Cox transformation to normality
-
Velilla, S. 1993. A note on the multivariate Box-Cox transformation to normality. Statist. Probab. Lett., 17: 259-263.
-
(1993)
Statist. Probab. Lett.
, vol.17
, pp. 259-263
-
-
Velilla, S.1
-
40
-
-
81955167495
-
Imputation of categorical variables using Gaussian-based routines
-
Yucel, R., He, Y. and Zaslavsky, A. M. 2011. Imputation of categorical variables using Gaussian-based routines. Stat. Med., 30: 3447-3460.
-
(2011)
Stat. Med.
, vol.30
, pp. 3447-3460
-
-
Yucel, R.1
He, Y.2
Zaslavsky, A.M.3
|