-
1
-
-
84872772920
-
Altering anode thickness to improve power production in microbial fuel cells with different electrode distances
-
Ahn, Y. and B. E. Logan. 2012. Altering anode thickness to improve power production in microbial fuel cells with different electrode distances. Energy Fuel 27:271-6.
-
(2012)
Energy Fuel
, vol.27
, pp. 271-276
-
-
Ahn, Y.1
Logan, B.E.2
-
2
-
-
84866400790
-
Development of gas diffusion electrodes for cogeneration of chemicals and electricity
-
Alvarez-Gallego, Y., X. Dominguez-Benetton, D. Pant, L. Diels, K. Vanbroekhoven, I. Genné, and P. Vermeiren. 2012. Development of gas diffusion electrodes for cogeneration of chemicals and electricity. Electrochimica Acta 82:415-26.
-
(2012)
Electrochimica Acta
, vol.82
, pp. 415-426
-
-
Alvarez-Gallego, Y.1
Dominguez-Benetton, X.2
Pant, D.3
Diels, L.4
Vanbroekhoven, K.5
Genné, I.6
Vermeiren, P.7
-
3
-
-
17444394516
-
Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans
-
Bond, D. R. and D. R. Lovley. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Applied and Environmental Microbiology 71:2186-9.
-
(2005)
Applied and Environmental Microbiology
, vol.71
, pp. 2186-2189
-
-
Bond, D.R.1
Lovley, D.R.2
-
4
-
-
64549127249
-
High surface area stainless steel brushes as cathodes in microbial electrolysis cells
-
Call, D. F., M. D. Merrill, and B. E. Logan. 2009. High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environmental Science and Technology 43:2179-83.
-
(2009)
Environmental Science and Technology
, vol.43
, pp. 2179-2183
-
-
Call, D.F.1
Merrill, M.D.2
Logan, B.E.3
-
5
-
-
74449090973
-
A review on anaerobic-aerobic treatment of industrial and municipal wastewater
-
Chan, Y. J., M. F. Chong, C. L. Law, and D. G. Hassell. 2009. A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal 155:1-18.
-
(2009)
Chemical Engineering Journal
, vol.155
, pp. 1-18
-
-
Chan, Y.J.1
Chong, M.F.2
Law, C.L.3
Hassell, D.G.4
-
6
-
-
39449110385
-
Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers
-
Crespo, G. A., S. Macho, and F. X. Rius. 2008. Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Analytical Chemistry 80:1316-22.
-
(2008)
Analytical Chemistry
, vol.80
, pp. 1316-1322
-
-
Crespo, G.A.1
Macho, S.2
Rius, F.X.3
-
7
-
-
84912083648
-
Optimization of parameters for the increased electricity production by the microbial fuel cell using rumen fluid
-
Deepika, J., S Meignanalakshmi, and W. R. Thilagaraj. 2013. Optimization of parameters for the increased electricity production by the microbial fuel cell using rumen fluid. International Journal of Green Energy 12:333-338.
-
(2013)
International Journal of Green Energy
, vol.12
, pp. 333-338
-
-
Deepika, J.1
Meignanalakshmi, S.2
Thilagaraj, W.R.3
-
8
-
-
84867317699
-
The accurate use of impedance analysis for the study of microbial electrochemical systems
-
Dominguez-Benetton, X., S. Sevda, K. Vanbroekhoven, and D. Pant. 2012. The accurate use of impedance analysis for the study of microbial electrochemical systems. Chemical Society Reviews 41:7228-46.
-
(2012)
Chemical Society Reviews
, vol.41
, pp. 7228-7246
-
-
Dominguez-Benetton, X.1
Sevda, S.2
Vanbroekhoven, K.3
Pant, D.4
-
9
-
-
34447285505
-
A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy
-
Du, Z., H. Li, and T. Gu. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances 25:464-82.
-
(2007)
Biotechnology Advances
, vol.25
, pp. 464-482
-
-
Du, Z.1
Li, H.2
Gu, T.3
-
10
-
-
84882702796
-
Valorization of cereal based biorefinery byproducts: Reality and expectations
-
ElMekawy, A., L. Diels, H. Dewever, and D. Pant. 2013a. Valorization of cereal based biorefinery byproducts: Reality and expectations. Environmental Science and Technology 47:9014-27.
-
(2013)
Environmental Science and Technology
, vol.47
, pp. 9014-9027
-
-
ElMekawy, A.1
Diels, L.2
Dewever, H.3
Pant, D.4
-
11
-
-
84879840437
-
Internal resistance of microfluidic microbial fuel cell: Challenges and potential opportunities
-
ElMekawy, A., H. M. Hegab, X. Dominguez-Benetton, and D. Pant. 2013b. Internal resistance of microfluidic microbial fuel cell: Challenges and potential opportunities. Bioresource Technology 142:672-82.
-
(2013)
Bioresource Technology
, vol.142
, pp. 672-682
-
-
ElMekawy, A.1
Hegab, H.M.2
Dominguez-Benetton, X.3
Pant, D.4
-
12
-
-
55349136222
-
Quantification of the internal resistance distribution of microbial fuel cells
-
Fan, Y., E. Sharbrough, and H. Liu. 2008. Quantification of the internal resistance distribution of microbial fuel cells. Environmental Science and Technology 42:8101-7.
-
(2008)
Environmental Science and Technology
, vol.42
, pp. 8101-8107
-
-
Fan, Y.1
Sharbrough, E.2
Liu, H.3
-
13
-
-
80055041333
-
Bacterial biofilms: The powerhouse of a microbial fuel cell
-
Franks, A. E., N. Malvankar, and K. P. Nevin. 2010. Bacterial biofilms: The powerhouse of a microbial fuel cell. Biofuels 1:589-604.
-
(2010)
Biofuels
, vol.1
, pp. 589-604
-
-
Franks, A.E.1
Malvankar, N.2
Nevin, K.P.3
-
14
-
-
77949566589
-
The detoxification of lead in Sedum alfredii H
-
Gupta, D. K., H. G. Huang, X. E. Yang, B. H. N. Razafindrabe, and M. Inouhe. 2010. The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. Journal of Hazardous Materials 177:437-44.
-
(2010)
Is Not Related to Phytochelatins but the Glutathione. Journal of Hazardous Materials
, vol.177
, pp. 437-444
-
-
Gupta, D.K.1
Huang, H.G.2
Yang, X.E.3
Razafindrabe, B.H.N.4
Inouhe, M.5
-
15
-
-
76049106291
-
Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells
-
Ieropoulos, I., J. Winfield, and J. Greenman. 2010. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresource Technology 101:3520-5.
-
(2010)
Bioresource Technology
, vol.101
, pp. 3520-3525
-
-
Ieropoulos, I.1
Winfield, J.2
Greenman, J.3
-
16
-
-
77957338115
-
Recent advances in the separators for microbial fuel cells
-
Li, W. W., G. P. Sheng, X. W. Liu, and H. Q. Yu. 2011. Recent advances in the separators for microbial fuel cells. Bioresource Technology 102:244-52.
-
(2011)
Bioresource Technology
, vol.102
, pp. 244-252
-
-
Li, W.W.1
Sheng, G.P.2
Liu, X.W.3
Yu, H.Q.4
-
17
-
-
22344440310
-
Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration
-
Liu, H., S. Cheng, and B. E. Logan. 2005. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science and Technology 39:5488-93.
-
(2005)
Environmental Science and Technology
, vol.39
, pp. 5488-5493
-
-
Liu, H.1
Cheng, S.2
Logan, B.E.3
-
18
-
-
33748566549
-
Microbial fuel cells: Methodology and technology
-
Logan, B. E., B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, and K. Rabaey.2006. Microbial fuel cells: Methodology and technology. Environmental Science and Technology 40:5181-92.
-
(2006)
Environmental Science and Technology
, vol.40
, pp. 5181-5192
-
-
Logan, B.E.1
Hamelers, B.2
Rozendal, R.3
Schröder, U.4
Keller, J.5
Freguia, S.6
Rabaey, K.7
-
19
-
-
57049119571
-
The microbe electric: Conversion of organic matter to electricity
-
Lovley, D. R. 2008. The microbe electric: Conversion of organic matter to electricity. Current Opinion in Biotechnology 19:564-71.
-
(2008)
Current Opinion in Biotechnology
, vol.19
, pp. 564-571
-
-
Lovley, D.R.1
-
20
-
-
84856743101
-
Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells
-
Malvankar, N. S., M. T. Tuominen, and D. R. Lovley. 2012. Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells. Energy and Environmental Science 5:5790-7.
-
(2012)
Energy and Environmental Science
, vol.5
, pp. 5790-5797
-
-
Malvankar, N.S.1
Tuominen, M.T.2
Lovley, D.R.3
-
21
-
-
58249144863
-
The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions
-
Manohar, A. K. and F. Mansfeld. 2009. The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochimica Acta 54:1664-70.
-
(2009)
Electrochimica Acta
, vol.54
, pp. 1664-1670
-
-
Manohar, A.K.1
Mansfeld, F.2
-
22
-
-
77749270420
-
Bioelectrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation
-
Mohanakrishna, G., S. Venkata Mohan, and P. N. Sarma. 2010. Bioelectrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation. Journal of Hazardous Materials 177:487-94.
-
(2010)
Journal of Hazardous Materials
, vol.177
, pp. 487-494
-
-
Mohanakrishna, G.1
Venkata Mohan, S.2
Sarma, P.N.3
-
23
-
-
84883522977
-
The harnessing of bioenergy from a dual chambered microbial fuel cell (Mfc) employing sagoprocessing wastewater as catholyte
-
Muthukumar, M. and T. Sangeetha. 2014. The harnessing of bioenergy from a dual chambered microbial fuel cell (Mfc) employing sagoprocessing wastewater as catholyte. International Journal of Green Energy 11:161-72.
-
(2014)
International Journal of Green Energy
, vol.11
, pp. 161-172
-
-
Muthukumar, M.1
Sangeetha, T.2
-
25
-
-
33644498839
-
Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells
-
Oh, S. E. and B. E. Logan. 2006. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology 70:162-9.
-
(2006)
Applied Microbiology and Biotechnology
, vol.70
, pp. 162-169
-
-
Oh, S.E.1
Logan, B.E.2
-
26
-
-
84886078974
-
Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell
-
Pant, D., D. Arslan, G. Van Bogaert, Y. Alvarez Gallego, H. De Wever, L. Diels, and K. Vanbroekhoven. 2013. Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell. Environmental Technology. 34:1935-45.
-
(2013)
Environmental Technology.
, vol.34
, pp. 1935-1945
-
-
Pant, D.1
Arslan, D.2
Van Bogaert, G.3
Alvarez Gallego, Y.4
De Wever, H.5
Diels, L.6
Vanbroekhoven, K.7
-
27
-
-
84859130349
-
Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters
-
Pant, D., A. Singh, G. Van Bogaert, S. Irving Olsen, P. Singh Nigam, L. Diels, and K. Vanbroekhoven. 2012. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Advances 2:1248-63.
-
(2012)
RSC Advances
, vol.2
, pp. 1248-1263
-
-
Pant, D.1
Singh, A.2
Van Bogaert, G.3
Irving Olsen, S.4
Singh Nigam, P.5
Diels, L.6
Vanbroekhoven, K.7
-
28
-
-
77957150606
-
Use of novel permeable membrane and air cathodes in acetate microbial fuel cells
-
Pant, D., G.Van Bogaert, M. De Smet, L. Diels, and K. Vanbroekhoven. 2010b. Use of novel permeable membrane and air cathodes in acetate microbial fuel cells. Electrochimica Acta 5:7710-6.
-
(2010)
Electrochimica Acta
, vol.5
, pp. 7710-7716
-
-
Pant, D.1
Bogaert G.Van2
De Smet, M.3
Diels, L.4
Vanbroekhoven, K.5
-
29
-
-
74549151753
-
A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
-
Pant, D., G. Van Bogaert, L. Diels, and K. Vanbroekhoven. 2010a. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology 101:1533-43.
-
(2010)
Bioresource Technology
, vol.101
, pp. 1533-1543
-
-
Pant, D.1
Van Bogaert, G.2
Diels, L.3
Vanbroekhoven, K.4
-
30
-
-
0037419705
-
Improved fuel cell and electrode designs for producing electricity from microbial degradation
-
Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering 81:348-55.
-
(2003)
Biotechnology and Bioengineering
, vol.81
, pp. 348-355
-
-
Park, D.H.1
Zeikus, J.G.2
-
31
-
-
41849128520
-
Forming electrochemically active biofilms from garden compost under chronoamperometry
-
Parot, S., M. L. Délia, and A. Bergel. 2008. Forming electrochemically active biofilms from garden compost under chronoamperometry. Bioresource Technology 99:4809-16.
-
(2008)
Bioresource Technology
, vol.99
, pp. 4809-4816
-
-
Parot, S.1
Délia, M.L.2
Bergel, A.3
-
32
-
-
84870791628
-
Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems
-
Patil, S. A., C. Hägerhäll, and L. Gorton. 2012. Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanalytical Reviews 4(2-4):159-92.
-
(2012)
Bioanalytical Reviews
, vol.4
, Issue.2-4
, pp. 159-192
-
-
Patil, S.A.1
Hägerhäll, C.2
Gorton, L.3
-
33
-
-
33746067144
-
Microbial fuel cells in relation to conventional anaerobic digestion technology
-
Pham, T. H., K. Rabaey, P. Aelterman, P. Clauwaert, L. De Schamphelaire, N. Boon, and W. Verstraete. 2006. Microbial fuel cells in relation to conventional anaerobic digestion technology. Engineering in Life Sciences 6:285-92.
-
(2006)
Engineering in Life Sciences
, vol.6
, pp. 285-292
-
-
Pham, T.H.1
Rabaey, K.2
Aelterman, P.3
Clauwaert, P.4
De Schamphelaire, L.5
Boon, N.6
Verstraete, W.7
-
34
-
-
78649933335
-
Microbial fuel cell application in landfill leachate treatment
-
Puig, S., M. Serra, M. Coma, M. Cabré, M. Dolors Balaguer, and J. Colprim. 2011. Microbial fuel cell application in landfill leachate treatment. Journal of Hazardous Materials 185:763-7.
-
(2011)
Journal of Hazardous Materials
, vol.185
, pp. 763-767
-
-
Puig, S.1
Serra, M.2
Coma, M.3
Cabré, M.4
Dolors Balaguer, M.5
Colprim, J.6
-
35
-
-
50049103629
-
Impact of initial biofilm growth on the anode impedance of microbial fuel cells
-
Ramasamy, R. P., Z. Ren, M. M. Mench, and J. M. Regan. 2008. Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnology and Bioengineering 101:101-8.
-
(2008)
Biotechnology and Bioengineering
, vol.101
, pp. 101-108
-
-
Ramasamy, R.P.1
Ren, Z.2
Mench, M.M.3
Regan, J.M.4
-
36
-
-
70349845435
-
Microbial biofilms: A concept for industrial catalysis
-
Rosche, B., X. Z. Li, B. Hauer, A. Schmid, and K. Buehler. 2009. Microbial biofilms: A concept for industrial catalysis. Trends in Biotechnology 27:636-43.
-
(2009)
Trends in Biotechnology
, vol.27
, pp. 636-643
-
-
Rosche, B.1
Li, X.Z.2
Hauer, B.3
Schmid, A.4
Buehler, K.5
-
37
-
-
84873153064
-
High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell
-
Sevda, S., X. Dominguez-Benetton, K. Vanbroekhoven, H. De Wever, T. R. Sreekrishnan, and D. Pant. 2013a. High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Applied Energy 105:194-206.
-
(2013)
Applied Energy
, vol.105
, pp. 194-206
-
-
Sevda, S.1
Dominguez-Benetton, X.2
Vanbroekhoven, K.3
De Wever, H.4
Sreekrishnan, T.R.5
Pant, D.6
-
38
-
-
84878358411
-
Characterization and comparison of the performance of two different separator types in air-cathode microbial fuel cell treating synthetic wastewater
-
Sevda, S., X. Dominguez-benetton, K. Vanbroekhoven, T. R. Sreekrishnan, and D. Pant. 2013b. Characterization and comparison of the performance of two different separator types in air-cathode microbial fuel cell treating synthetic wastewater. Chemical Engineering Journal 228:1-11.
-
(2013)
Chemical Engineering Journal
, vol.228
, pp. 1-11
-
-
Sevda, S.1
Dominguez-Benetton, X.2
Vanbroekhoven, K.3
Sreekrishnan, T.R.4
Pant, D.5
-
40
-
-
33748562194
-
A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells
-
Ter Heijne, A., H. V. M. Hamelers, V. De Wilde, R. A. Rozendal, and C. J. N. Buisman. 2006. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environmental Science and Technology 40:5200-5
-
(2006)
Environmental Science and Technology
, vol.40
, pp. 5200-5205
-
-
Ter Heijne, A.1
Hamelers, H.V.M.2
De Wilde, V.3
Rozendal, R.A.4
Buisman, C.J.N.5
-
41
-
-
47049116935
-
Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria
-
Torres, C.I., A. K. Marcus, and B. E. Rittmann.2008. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnology and Bioengineering 100:872-81.
-
(2008)
Biotechnology and Bioengineering
, vol.100
, pp. 872-881
-
-
Torres, C.I.1
Marcus, A.K.2
Rittmann, B.E.3
-
42
-
-
80755173481
-
Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)
-
Wang, X, S. Cheng, X. Zhang, X. Li, and B. E. Logan. 2011. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs). International Journal of Hydrogen Energy 36:13900-6.
-
(2011)
International Journal of Hydrogen Energy
, vol.36
, pp. 13900-13906
-
-
Wang, X.1
Cheng, S.2
Zhang, X.3
Li, X.4
Logan, B.E.5
-
43
-
-
66149189097
-
Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater
-
Wen, Q., Y. Wu, D. Cao, L. Zhao, and Q. Sun. 2009. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresource Technology 100:4171-5.
-
(2009)
Bioresource Technology
, vol.100
, pp. 4171-4175
-
-
Wen, Q.1
Wu, Y.2
Cao, D.3
Zhao, L.4
Sun, Q.5
-
44
-
-
79953779476
-
Enhancing simultaneous electricity production and reduction of sewage sludge in two-chamber MFC by aerobic sludge digestion and sludge pretreatments
-
Xiao, B., F. Yang, and J. Liu. 2011. Enhancing simultaneous electricity production and reduction of sewage sludge in two-chamber MFC by aerobic sludge digestion and sludge pretreatments. Journal of Hazardous Materials 189:444-9.
-
(2011)
Journal of Hazardous Materials
, vol.189
, pp. 444-449
-
-
Xiao, B.1
Yang, F.2
Liu, J.3
-
45
-
-
79951854229
-
Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell
-
Yuan, Y., Q. Chen, S. Zhou, L. Zhuang, and P. Hu. 2011. Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell. Journal of Hazardous Materials 187:591-5.
-
(2011)
Journal of Hazardous Materials
, vol.187
, pp. 591-595
-
-
Yuan, Y.1
Chen, Q.2
Zhou, S.3
Zhuang, L.4
Hu, P.5
-
46
-
-
70350536776
-
Pyridine degradation in the microbial fuel cells
-
Zhang, C., M. Li, G. Liu, H. Luo, and R. Zhang. 2009. Pyridine degradation in the microbial fuel cells. Journal of Hazardous Materials 172:465-71.
-
(2009)
Journal of Hazardous Materials
, vol.172
, pp. 465-471
-
-
Zhang, C.1
Li, M.2
Liu, G.3
Luo, H.4
Zhang, R.5
-
47
-
-
46849100204
-
Activated carbon cloth as anode for sulfate removal in a microbial fuel cell
-
Zhao, F., N. Rahunen, J. R.Varcoe, A. Chandra, C. Avignone-Rossa, A. E. Thumser, and R. C. T. Slade. 2008. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environmental Science and Technology 42:4971-6.
-
(2008)
Environmental Science and Technology
, vol.42
, pp. 4971-4976
-
-
Zhao, F.1
Rahunen, N.2
Varcoe, J.R.3
Chandra, A.4
Avignone-Rossa, C.5
Thumser, A.E.6
Slade, R.C.T.7
|