메뉴 건너뛰기




Volumn 13, Issue 1, 2016, Pages 71-79

Shift to continuous operation of an air-cathode microbial fuel cell long-running in fed-batch mode boosts power generation

Author keywords

bioelectricity; biofilm formation; continuous mode; internal resistance; Microbial fuel cell; power generation

Indexed keywords

ANODES; BIOELECTRIC PHENOMENA; BIOFILMS; CATHODES; ELECTRODES; ELECTROPHYSIOLOGY; FUEL CELLS; OPEN CIRCUIT VOLTAGE; POWER GENERATION; SUBSTRATES;

EID: 84944937207     PISSN: 15435075     EISSN: 15435083     Source Type: Journal    
DOI: 10.1080/15435075.2014.909363     Document Type: Article
Times cited : (27)

References (47)
  • 1
    • 84872772920 scopus 로고    scopus 로고
    • Altering anode thickness to improve power production in microbial fuel cells with different electrode distances
    • Ahn, Y. and B. E. Logan. 2012. Altering anode thickness to improve power production in microbial fuel cells with different electrode distances. Energy Fuel 27:271-6.
    • (2012) Energy Fuel , vol.27 , pp. 271-276
    • Ahn, Y.1    Logan, B.E.2
  • 3
    • 17444394516 scopus 로고    scopus 로고
    • Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans
    • Bond, D. R. and D. R. Lovley. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Applied and Environmental Microbiology 71:2186-9.
    • (2005) Applied and Environmental Microbiology , vol.71 , pp. 2186-2189
    • Bond, D.R.1    Lovley, D.R.2
  • 4
    • 64549127249 scopus 로고    scopus 로고
    • High surface area stainless steel brushes as cathodes in microbial electrolysis cells
    • Call, D. F., M. D. Merrill, and B. E. Logan. 2009. High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environmental Science and Technology 43:2179-83.
    • (2009) Environmental Science and Technology , vol.43 , pp. 2179-2183
    • Call, D.F.1    Merrill, M.D.2    Logan, B.E.3
  • 5
    • 74449090973 scopus 로고    scopus 로고
    • A review on anaerobic-aerobic treatment of industrial and municipal wastewater
    • Chan, Y. J., M. F. Chong, C. L. Law, and D. G. Hassell. 2009. A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal 155:1-18.
    • (2009) Chemical Engineering Journal , vol.155 , pp. 1-18
    • Chan, Y.J.1    Chong, M.F.2    Law, C.L.3    Hassell, D.G.4
  • 6
    • 39449110385 scopus 로고    scopus 로고
    • Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers
    • Crespo, G. A., S. Macho, and F. X. Rius. 2008. Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Analytical Chemistry 80:1316-22.
    • (2008) Analytical Chemistry , vol.80 , pp. 1316-1322
    • Crespo, G.A.1    Macho, S.2    Rius, F.X.3
  • 7
    • 84912083648 scopus 로고    scopus 로고
    • Optimization of parameters for the increased electricity production by the microbial fuel cell using rumen fluid
    • Deepika, J., S Meignanalakshmi, and W. R. Thilagaraj. 2013. Optimization of parameters for the increased electricity production by the microbial fuel cell using rumen fluid. International Journal of Green Energy 12:333-338.
    • (2013) International Journal of Green Energy , vol.12 , pp. 333-338
    • Deepika, J.1    Meignanalakshmi, S.2    Thilagaraj, W.R.3
  • 8
    • 84867317699 scopus 로고    scopus 로고
    • The accurate use of impedance analysis for the study of microbial electrochemical systems
    • Dominguez-Benetton, X., S. Sevda, K. Vanbroekhoven, and D. Pant. 2012. The accurate use of impedance analysis for the study of microbial electrochemical systems. Chemical Society Reviews 41:7228-46.
    • (2012) Chemical Society Reviews , vol.41 , pp. 7228-7246
    • Dominguez-Benetton, X.1    Sevda, S.2    Vanbroekhoven, K.3    Pant, D.4
  • 9
    • 34447285505 scopus 로고    scopus 로고
    • A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy
    • Du, Z., H. Li, and T. Gu. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances 25:464-82.
    • (2007) Biotechnology Advances , vol.25 , pp. 464-482
    • Du, Z.1    Li, H.2    Gu, T.3
  • 10
    • 84882702796 scopus 로고    scopus 로고
    • Valorization of cereal based biorefinery byproducts: Reality and expectations
    • ElMekawy, A., L. Diels, H. Dewever, and D. Pant. 2013a. Valorization of cereal based biorefinery byproducts: Reality and expectations. Environmental Science and Technology 47:9014-27.
    • (2013) Environmental Science and Technology , vol.47 , pp. 9014-9027
    • ElMekawy, A.1    Diels, L.2    Dewever, H.3    Pant, D.4
  • 11
    • 84879840437 scopus 로고    scopus 로고
    • Internal resistance of microfluidic microbial fuel cell: Challenges and potential opportunities
    • ElMekawy, A., H. M. Hegab, X. Dominguez-Benetton, and D. Pant. 2013b. Internal resistance of microfluidic microbial fuel cell: Challenges and potential opportunities. Bioresource Technology 142:672-82.
    • (2013) Bioresource Technology , vol.142 , pp. 672-682
    • ElMekawy, A.1    Hegab, H.M.2    Dominguez-Benetton, X.3    Pant, D.4
  • 12
    • 55349136222 scopus 로고    scopus 로고
    • Quantification of the internal resistance distribution of microbial fuel cells
    • Fan, Y., E. Sharbrough, and H. Liu. 2008. Quantification of the internal resistance distribution of microbial fuel cells. Environmental Science and Technology 42:8101-7.
    • (2008) Environmental Science and Technology , vol.42 , pp. 8101-8107
    • Fan, Y.1    Sharbrough, E.2    Liu, H.3
  • 13
    • 80055041333 scopus 로고    scopus 로고
    • Bacterial biofilms: The powerhouse of a microbial fuel cell
    • Franks, A. E., N. Malvankar, and K. P. Nevin. 2010. Bacterial biofilms: The powerhouse of a microbial fuel cell. Biofuels 1:589-604.
    • (2010) Biofuels , vol.1 , pp. 589-604
    • Franks, A.E.1    Malvankar, N.2    Nevin, K.P.3
  • 15
    • 76049106291 scopus 로고    scopus 로고
    • Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells
    • Ieropoulos, I., J. Winfield, and J. Greenman. 2010. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresource Technology 101:3520-5.
    • (2010) Bioresource Technology , vol.101 , pp. 3520-3525
    • Ieropoulos, I.1    Winfield, J.2    Greenman, J.3
  • 16
    • 77957338115 scopus 로고    scopus 로고
    • Recent advances in the separators for microbial fuel cells
    • Li, W. W., G. P. Sheng, X. W. Liu, and H. Q. Yu. 2011. Recent advances in the separators for microbial fuel cells. Bioresource Technology 102:244-52.
    • (2011) Bioresource Technology , vol.102 , pp. 244-252
    • Li, W.W.1    Sheng, G.P.2    Liu, X.W.3    Yu, H.Q.4
  • 17
    • 22344440310 scopus 로고    scopus 로고
    • Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration
    • Liu, H., S. Cheng, and B. E. Logan. 2005. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science and Technology 39:5488-93.
    • (2005) Environmental Science and Technology , vol.39 , pp. 5488-5493
    • Liu, H.1    Cheng, S.2    Logan, B.E.3
  • 19
    • 57049119571 scopus 로고    scopus 로고
    • The microbe electric: Conversion of organic matter to electricity
    • Lovley, D. R. 2008. The microbe electric: Conversion of organic matter to electricity. Current Opinion in Biotechnology 19:564-71.
    • (2008) Current Opinion in Biotechnology , vol.19 , pp. 564-571
    • Lovley, D.R.1
  • 20
    • 84856743101 scopus 로고    scopus 로고
    • Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells
    • Malvankar, N. S., M. T. Tuominen, and D. R. Lovley. 2012. Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells. Energy and Environmental Science 5:5790-7.
    • (2012) Energy and Environmental Science , vol.5 , pp. 5790-5797
    • Malvankar, N.S.1    Tuominen, M.T.2    Lovley, D.R.3
  • 21
    • 58249144863 scopus 로고    scopus 로고
    • The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions
    • Manohar, A. K. and F. Mansfeld. 2009. The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochimica Acta 54:1664-70.
    • (2009) Electrochimica Acta , vol.54 , pp. 1664-1670
    • Manohar, A.K.1    Mansfeld, F.2
  • 22
    • 77749270420 scopus 로고    scopus 로고
    • Bioelectrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation
    • Mohanakrishna, G., S. Venkata Mohan, and P. N. Sarma. 2010. Bioelectrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation. Journal of Hazardous Materials 177:487-94.
    • (2010) Journal of Hazardous Materials , vol.177 , pp. 487-494
    • Mohanakrishna, G.1    Venkata Mohan, S.2    Sarma, P.N.3
  • 23
    • 84883522977 scopus 로고    scopus 로고
    • The harnessing of bioenergy from a dual chambered microbial fuel cell (Mfc) employing sagoprocessing wastewater as catholyte
    • Muthukumar, M. and T. Sangeetha. 2014. The harnessing of bioenergy from a dual chambered microbial fuel cell (Mfc) employing sagoprocessing wastewater as catholyte. International Journal of Green Energy 11:161-72.
    • (2014) International Journal of Green Energy , vol.11 , pp. 161-172
    • Muthukumar, M.1    Sangeetha, T.2
  • 25
    • 33644498839 scopus 로고    scopus 로고
    • Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells
    • Oh, S. E. and B. E. Logan. 2006. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology 70:162-9.
    • (2006) Applied Microbiology and Biotechnology , vol.70 , pp. 162-169
    • Oh, S.E.1    Logan, B.E.2
  • 26
    • 84886078974 scopus 로고    scopus 로고
    • Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell
    • Pant, D., D. Arslan, G. Van Bogaert, Y. Alvarez Gallego, H. De Wever, L. Diels, and K. Vanbroekhoven. 2013. Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell. Environmental Technology. 34:1935-45.
    • (2013) Environmental Technology. , vol.34 , pp. 1935-1945
    • Pant, D.1    Arslan, D.2    Van Bogaert, G.3    Alvarez Gallego, Y.4    De Wever, H.5    Diels, L.6    Vanbroekhoven, K.7
  • 27
    • 84859130349 scopus 로고    scopus 로고
    • Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters
    • Pant, D., A. Singh, G. Van Bogaert, S. Irving Olsen, P. Singh Nigam, L. Diels, and K. Vanbroekhoven. 2012. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Advances 2:1248-63.
    • (2012) RSC Advances , vol.2 , pp. 1248-1263
    • Pant, D.1    Singh, A.2    Van Bogaert, G.3    Irving Olsen, S.4    Singh Nigam, P.5    Diels, L.6    Vanbroekhoven, K.7
  • 28
    • 77957150606 scopus 로고    scopus 로고
    • Use of novel permeable membrane and air cathodes in acetate microbial fuel cells
    • Pant, D., G.Van Bogaert, M. De Smet, L. Diels, and K. Vanbroekhoven. 2010b. Use of novel permeable membrane and air cathodes in acetate microbial fuel cells. Electrochimica Acta 5:7710-6.
    • (2010) Electrochimica Acta , vol.5 , pp. 7710-7716
    • Pant, D.1    Bogaert G.Van2    De Smet, M.3    Diels, L.4    Vanbroekhoven, K.5
  • 29
    • 74549151753 scopus 로고    scopus 로고
    • A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
    • Pant, D., G. Van Bogaert, L. Diels, and K. Vanbroekhoven. 2010a. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology 101:1533-43.
    • (2010) Bioresource Technology , vol.101 , pp. 1533-1543
    • Pant, D.1    Van Bogaert, G.2    Diels, L.3    Vanbroekhoven, K.4
  • 30
    • 0037419705 scopus 로고    scopus 로고
    • Improved fuel cell and electrode designs for producing electricity from microbial degradation
    • Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering 81:348-55.
    • (2003) Biotechnology and Bioengineering , vol.81 , pp. 348-355
    • Park, D.H.1    Zeikus, J.G.2
  • 31
    • 41849128520 scopus 로고    scopus 로고
    • Forming electrochemically active biofilms from garden compost under chronoamperometry
    • Parot, S., M. L. Délia, and A. Bergel. 2008. Forming electrochemically active biofilms from garden compost under chronoamperometry. Bioresource Technology 99:4809-16.
    • (2008) Bioresource Technology , vol.99 , pp. 4809-4816
    • Parot, S.1    Délia, M.L.2    Bergel, A.3
  • 32
    • 84870791628 scopus 로고    scopus 로고
    • Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems
    • Patil, S. A., C. Hägerhäll, and L. Gorton. 2012. Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanalytical Reviews 4(2-4):159-92.
    • (2012) Bioanalytical Reviews , vol.4 , Issue.2-4 , pp. 159-192
    • Patil, S.A.1    Hägerhäll, C.2    Gorton, L.3
  • 35
    • 50049103629 scopus 로고    scopus 로고
    • Impact of initial biofilm growth on the anode impedance of microbial fuel cells
    • Ramasamy, R. P., Z. Ren, M. M. Mench, and J. M. Regan. 2008. Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnology and Bioengineering 101:101-8.
    • (2008) Biotechnology and Bioengineering , vol.101 , pp. 101-108
    • Ramasamy, R.P.1    Ren, Z.2    Mench, M.M.3    Regan, J.M.4
  • 38
    • 84878358411 scopus 로고    scopus 로고
    • Characterization and comparison of the performance of two different separator types in air-cathode microbial fuel cell treating synthetic wastewater
    • Sevda, S., X. Dominguez-benetton, K. Vanbroekhoven, T. R. Sreekrishnan, and D. Pant. 2013b. Characterization and comparison of the performance of two different separator types in air-cathode microbial fuel cell treating synthetic wastewater. Chemical Engineering Journal 228:1-11.
    • (2013) Chemical Engineering Journal , vol.228 , pp. 1-11
    • Sevda, S.1    Dominguez-Benetton, X.2    Vanbroekhoven, K.3    Sreekrishnan, T.R.4    Pant, D.5
  • 41
    • 47049116935 scopus 로고    scopus 로고
    • Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria
    • Torres, C.I., A. K. Marcus, and B. E. Rittmann.2008. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnology and Bioengineering 100:872-81.
    • (2008) Biotechnology and Bioengineering , vol.100 , pp. 872-881
    • Torres, C.I.1    Marcus, A.K.2    Rittmann, B.E.3
  • 43
    • 66149189097 scopus 로고    scopus 로고
    • Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater
    • Wen, Q., Y. Wu, D. Cao, L. Zhao, and Q. Sun. 2009. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresource Technology 100:4171-5.
    • (2009) Bioresource Technology , vol.100 , pp. 4171-4175
    • Wen, Q.1    Wu, Y.2    Cao, D.3    Zhao, L.4    Sun, Q.5
  • 44
    • 79953779476 scopus 로고    scopus 로고
    • Enhancing simultaneous electricity production and reduction of sewage sludge in two-chamber MFC by aerobic sludge digestion and sludge pretreatments
    • Xiao, B., F. Yang, and J. Liu. 2011. Enhancing simultaneous electricity production and reduction of sewage sludge in two-chamber MFC by aerobic sludge digestion and sludge pretreatments. Journal of Hazardous Materials 189:444-9.
    • (2011) Journal of Hazardous Materials , vol.189 , pp. 444-449
    • Xiao, B.1    Yang, F.2    Liu, J.3
  • 45
    • 79951854229 scopus 로고    scopus 로고
    • Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell
    • Yuan, Y., Q. Chen, S. Zhou, L. Zhuang, and P. Hu. 2011. Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell. Journal of Hazardous Materials 187:591-5.
    • (2011) Journal of Hazardous Materials , vol.187 , pp. 591-595
    • Yuan, Y.1    Chen, Q.2    Zhou, S.3    Zhuang, L.4    Hu, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.