-
1
-
-
33646749524
-
Continuous electricity generation at high voltages and currents using stacked microbial fuel cells
-
Aelterman P., Rabaey K., Pham H.T., Boon N., Verstraete W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 2006, 40:3388-3394.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 3388-3394
-
-
Aelterman, P.1
Rabaey, K.2
Pham, H.T.3
Boon, N.4
Verstraete, W.5
-
2
-
-
84879837648
-
-
Electrochemical methods: fundamentals and applications, Nature Publishing Group, a division of Macmillan Publishers Limited.
-
Bard, A.J., Faulkner, L.R. 2001. In: Electrochemical methods: fundamentals and applications, Nature Publishing Group, a division of Macmillan Publishers Limited.
-
(2001)
-
-
Bard, A.J.1
Faulkner, L.R.2
-
3
-
-
77955185967
-
Electrochemical evaluation of Ti/TiO2-polyaniline anodes for microbial fuel cells using hypersaline microbial consortia for synthetic-wastewater treatment
-
Benetton X.D., Navarro-Ávila S.G., Carrera-Figueiras C. Electrochemical evaluation of Ti/TiO2-polyaniline anodes for microbial fuel cells using hypersaline microbial consortia for synthetic-wastewater treatment. J. New Mater. Electrochem. Syst. 2010, 13:1-6.
-
(2010)
J. New Mater. Electrochem. Syst.
, vol.13
, pp. 1-6
-
-
Benetton, X.D.1
Navarro-Ávila, S.G.2
Carrera-Figueiras, C.3
-
4
-
-
0037337606
-
Electricity production by Geobacter sulfurreducens attached to electrodes
-
Bond D.R., Lovley D.R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003, 69:1548-1555.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 1548-1555
-
-
Bond, D.R.1
Lovley, D.R.2
-
5
-
-
33748061293
-
Analysis of membraneless fuel cell using laminar flow in a Y-shaped microchannel
-
Chang M.H., Chen F., Fang N.S. Analysis of membraneless fuel cell using laminar flow in a Y-shaped microchannel. J. Power Sources 2006, 159:810-816.
-
(2006)
J. Power Sources
, vol.159
, pp. 810-816
-
-
Chang, M.H.1
Chen, F.2
Fang, N.S.3
-
6
-
-
0141542682
-
Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
-
Chaudhuri S.K., Lovley D.R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 2003, 21:1229-1232.
-
(2003)
Nat. Biotechnol.
, vol.21
, pp. 1229-1232
-
-
Chaudhuri, S.K.1
Lovley, D.R.2
-
7
-
-
33846289179
-
Analysis of membraneless formic acid microfuel cell using a planar microchannel
-
Chen F., Chang M.-H., Lin M.-K. Analysis of membraneless formic acid microfuel cell using a planar microchannel. Electrochim. Acta 2007, 52:2506-2514.
-
(2007)
Electrochim. Acta
, vol.52
, pp. 2506-2514
-
-
Chen, F.1
Chang, M.-H.2
Lin, M.-K.3
-
8
-
-
78651358118
-
An innovative miniature microbial fuel cell fabricated using photolithography
-
Chen Y.P., Zhao Y., Qiu K.Q., Chu J., Lu R., Sun M., Liu X.W., Sheng G.P., Yu H.Q., Chen J., Li W.J., Liu G., Tian Y.C., Xiong Y. An innovative miniature microbial fuel cell fabricated using photolithography. Biosens. Bioelectron. 2011, 26:2841-2846.
-
(2011)
Biosens. Bioelectron.
, vol.26
, pp. 2841-2846
-
-
Chen, Y.P.1
Zhao, Y.2
Qiu, K.Q.3
Chu, J.4
Lu, R.5
Sun, M.6
Liu, X.W.7
Sheng, G.P.8
Yu, H.Q.9
Chen, J.10
Li, W.J.11
Liu, G.12
Tian, Y.C.13
Xiong, Y.14
-
9
-
-
33846093956
-
Micromachined microbial and photosynthetic fuel cells
-
Chiao M., Lam K.B., Lin L.W. Micromachined microbial and photosynthetic fuel cells. J. Micromech. Microeng. 2006, 16:2547-2553.
-
(2006)
J. Micromech. Microeng.
, vol.16
, pp. 2547-2553
-
-
Chiao, M.1
Lam, K.B.2
Lin, L.W.3
-
10
-
-
62249104417
-
Reliability study of hermetic wafer level MEMS packaging with through-wafer interconnect
-
Choa S.-H. Reliability study of hermetic wafer level MEMS packaging with through-wafer interconnect. Microsyst. Technol. 2009, 15:677-686.
-
(2009)
Microsyst. Technol.
, vol.15
, pp. 677-686
-
-
Choa, S.-H.1
-
11
-
-
84858074520
-
An array of microliter-sized microbial fuel cells generating 100μW of power
-
Choi S., Chae J. An array of microliter-sized microbial fuel cells generating 100μW of power. Sens. Actuators A 2012, 177:10-15.
-
(2012)
Sens. Actuators A
, vol.177
, pp. 10-15
-
-
Choi, S.1
Chae, J.2
-
12
-
-
85027957914
-
Optimal biofilm formation and power generation in a micro-sized microbial fuel cell (MFC)
-
Choi S., Chae J. Optimal biofilm formation and power generation in a micro-sized microbial fuel cell (MFC). Sens. Actuators A 2012, 195:206-212.
-
(2012)
Sens. Actuators A
, vol.195
, pp. 206-212
-
-
Choi, S.1
Chae, J.2
-
13
-
-
79952134269
-
A μL-scale micromachined microbial fuel cell having high power density
-
Choi S., Lee H.S., Yang Y., Parameswaran P., Torres C.I., Rittmann B.E., Chae J. A μL-scale micromachined microbial fuel cell having high power density. Lab Chip 2011, 11:1110-1117.
-
(2011)
Lab Chip
, vol.11
, pp. 1110-1117
-
-
Choi, S.1
Lee, H.S.2
Yang, Y.3
Parameswaran, P.4
Torres, C.I.5
Rittmann, B.E.6
Chae, J.7
-
14
-
-
34548009438
-
Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer
-
Crittenden S.R., Sund C.J., Sumner J.J. Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer. Langmuir 2006, 22:9473-9476.
-
(2006)
Langmuir
, vol.22
, pp. 9473-9476
-
-
Crittenden, S.R.1
Sund, C.J.2
Sumner, J.J.3
-
15
-
-
33846336459
-
Biofuel cells-Recent advances and applications
-
Davis F., Higson S.P.J. Biofuel cells-Recent advances and applications. Biosens. Bioelectron. 2007, 22:1224-1235.
-
(2007)
Biosens. Bioelectron.
, vol.22
, pp. 1224-1235
-
-
Davis, F.1
Higson, S.P.J.2
-
16
-
-
72249101946
-
Analysis and improvement of a scaled-up and stacked microbial fuel cell
-
Dekker A., Ter Heijne A., Saakes M., Hamelers H.V., Buisman C.J. Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environ. Sci. Technol. 2009, 43:9038-9042.
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 9038-9042
-
-
Dekker, A.1
Ter Heijne, A.2
Saakes, M.3
Hamelers, H.V.4
Buisman, C.J.5
-
17
-
-
84867317699
-
The accurate use of impedance analysis for the study of microbial electrochemical systems
-
Dominguez-Benetton X., Sevda S., Vanbroekhoven K., Pant D. The accurate use of impedance analysis for the study of microbial electrochemical systems. Chem. Soc. Rev. 2012, 41:7228-7246.
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 7228-7246
-
-
Dominguez-Benetton, X.1
Sevda, S.2
Vanbroekhoven, K.3
Pant, D.4
-
18
-
-
0032403465
-
Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)
-
Duffy D.C., McDonald J.C., Schueller O.J., Whitesides G.M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 1998, 70:4974-4984.
-
(1998)
Anal. Chem.
, vol.70
, pp. 4974-4984
-
-
Duffy, D.C.1
McDonald, J.C.2
Schueller, O.J.3
Whitesides, G.M.4
-
19
-
-
55349136222
-
Quantification of the internal resistance distribution of microbial fuel cells
-
Fan Y., Sharbrough E., Liu H. Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol. 2008, 42:8101-8107.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 8101-8107
-
-
Fan, Y.1
Sharbrough, E.2
Liu, H.3
-
20
-
-
33746624663
-
Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms
-
Gorby Y.A., Yanina S., McLean J.S., Rosso K.M., Moyles D., Dohnalkova A., Beveridge T.J., Chang I.S., Kim B.H., Kim K.S., Culley D.E., Reed S.B., Romine M.F., Saffarini D.A., Hill E.A., Shi L., Elias D.A., Kennedy D.W., Pinchuk G., Watanabe K., Ishii S., Logan B., Nealson K.H., Fredrickson J.K. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 2006, 103:11358-11363.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 11358-11363
-
-
Gorby, Y.A.1
Yanina, S.2
McLean, J.S.3
Rosso, K.M.4
Moyles, D.5
Dohnalkova, A.6
Beveridge, T.J.7
Chang, I.S.8
Kim, B.H.9
Kim, K.S.10
Culley, D.E.11
Reed, S.B.12
Romine, M.F.13
Saffarini, D.A.14
Hill, E.A.15
Shi, L.16
Elias, D.A.17
Kennedy, D.W.18
Pinchuk, G.19
Watanabe, K.20
Ishii, S.21
Logan, B.22
Nealson, K.H.23
Fredrickson, J.K.24
more..
-
21
-
-
13844300190
-
Microbial fuel cells (MFCs) with interpolymer cation exchange membranes
-
Grzebyk M., Poźniak G. Microbial fuel cells (MFCs) with interpolymer cation exchange membranes. Sep. Purif. Technol. 2005, 41:321-328.
-
(2005)
Sep. Purif. Technol.
, vol.41
, pp. 321-328
-
-
Grzebyk, M.1
Poźniak, G.2
-
22
-
-
84873733225
-
A microfluidic microbial fuel cell array that supports long-term multiplexed analyses of electricigens
-
Hou H., Li L., Ceylan C.U., Haynes A., Cope J., Wilkinson H.H., Erbay C., de Figueiredo P., Han A. A microfluidic microbial fuel cell array that supports long-term multiplexed analyses of electricigens. Lab Chip 2012, 12:4151-4159.
-
(2012)
Lab Chip
, vol.12
, pp. 4151-4159
-
-
Hou, H.1
Li, L.2
Ceylan, C.U.3
Haynes, A.4
Cope, J.5
Wilkinson, H.H.6
Erbay, C.7
de Figueiredo, P.8
Han, A.9
-
23
-
-
68749114023
-
Microfabricated microbial fuel cell arrays reveal electrochemically active microbes
-
Hou H., Li L., Cho Y., de Figueiredo P., Han A. Microfabricated microbial fuel cell arrays reveal electrochemically active microbes. PLoS One 2009, 4:0006570.
-
(2009)
PLoS One
, vol.4
, pp. 0006570
-
-
Hou, H.1
Li, L.2
Cho, Y.3
de Figueiredo, P.4
Han, A.5
-
24
-
-
78650616023
-
Air-cathode microbial fuel cell array: a device for identifying and characterizing electrochemically active microbes
-
Hou H., Li L., de Figueiredo P., Han A. Air-cathode microbial fuel cell array: a device for identifying and characterizing electrochemically active microbes. Biosens. Bioelectron. 2011, 26:2680-2684.
-
(2011)
Biosens. Bioelectron.
, vol.26
, pp. 2680-2684
-
-
Hou, H.1
Li, L.2
de Figueiredo, P.3
Han, A.4
-
25
-
-
44649109502
-
Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant
-
Kim B.C., Postier B.L., Didonato R.J., Chaudhuri S.K., Nevin K.P., Lovley D.R. Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant. Bioelectrochemistry 2008, 73:70-75.
-
(2008)
Bioelectrochemistry
, vol.73
, pp. 70-75
-
-
Kim, B.C.1
Postier, B.L.2
Didonato, R.J.3
Chaudhuri, S.K.4
Nevin, K.P.5
Lovley, D.R.6
-
26
-
-
36749090637
-
Growth with high planktonic biomass in Shewanella oneidensis fuel cells
-
Lanthier M., Gregory K.B., Lovley D.R. Growth with high planktonic biomass in Shewanella oneidensis fuel cells. FEMS Microbiol. Lett. 2008, 278:29-35.
-
(2008)
FEMS Microbiol. Lett.
, vol.278
, pp. 29-35
-
-
Lanthier, M.1
Gregory, K.B.2
Lovley, D.R.3
-
27
-
-
84879846250
-
-
Fuel cell systems explained, John Wiley & Sons. Chichester
-
Larminie, J., Dicks, A. 2000. in: Fuel cell systems explained, John Wiley & Sons. Chichester, pp. 308.
-
(2000)
, pp. 308
-
-
Larminie, J.1
Dicks, A.2
-
28
-
-
79960454675
-
Microbial electricity generation via microfluidic flow control
-
Li Z., Zhang Y., LeDuc P.R., Gregory K.B. Microbial electricity generation via microfluidic flow control. Biotechnol. Bioeng. 2011, 108:2061-2069.
-
(2011)
Biotechnol. Bioeng.
, vol.108
, pp. 2061-2069
-
-
Li, Z.1
Zhang, Y.2
LeDuc, P.R.3
Gregory, K.B.4
-
30
-
-
84947724411
-
-
John Wiley & Sons Inc., New York, USA
-
Logan B.E. Microbial Fuel Cells 2008, John Wiley & Sons Inc., New York, USA.
-
(2008)
Microbial Fuel Cells
-
-
Logan, B.E.1
-
31
-
-
33748566549
-
Microbial fuel cells: methodology and technology
-
Logan B.E., Hamelers B., Rozendal R., Schroder U., Keller J., Freguia S., Aelterman P., Verstraete W., Rabaey K. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 2006, 40:5181-5192.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 5181-5192
-
-
Logan, B.E.1
Hamelers, B.2
Rozendal, R.3
Schroder, U.4
Keller, J.5
Freguia, S.6
Aelterman, P.7
Verstraete, W.8
Rabaey, K.9
-
32
-
-
33745225414
-
Bug juice. harvesting electricity with microorganisms
-
Lovley D.R. Bug juice. harvesting electricity with microorganisms. Nat. Rev. Microbiol. 2006, 4:497-508.
-
(2006)
Nat. Rev. Microbiol.
, vol.4
, pp. 497-508
-
-
Lovley, D.R.1
-
33
-
-
44349126251
-
Extracellular electron transfer: wires, capacitors, iron lungs, and more
-
Lovley D.R. Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiology 2008, 6:225-231.
-
(2008)
Geobiology
, vol.6
, pp. 225-231
-
-
Lovley, D.R.1
-
34
-
-
57049092332
-
Electricity production with electricigens
-
Bioenergy, (Ed.) J. Wall, ASM Press. Washington, DC
-
Lovley, D.R., Nevin, K.P. 2008. Electricity production with electricigens. in: Bioenergy, (Ed.) J. Wall, ASM Press. Washington, DC, pp. 295-306.
-
(2008)
, pp. 295-306
-
-
Lovley, D.R.1
Nevin, K.P.2
-
35
-
-
51149096954
-
Harvesting energy from the marine sediment-water interface. III. Kinetic activity of quinone- and antimony-based anode materials
-
Lowy D.A., Tender L.M. Harvesting energy from the marine sediment-water interface. III. Kinetic activity of quinone- and antimony-based anode materials. J. Power Sources 2008, 185:70-75.
-
(2008)
J. Power Sources
, vol.185
, pp. 70-75
-
-
Lowy, D.A.1
Tender, L.M.2
-
38
-
-
41649085415
-
Shewanella secretes flavins that mediate extracellular electron transfer
-
Marsili E., Baron D.B., Shikhare I.D., Coursolle D., Gralnick J.A., Bond D.R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 2008, 105:3968-3973.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 3968-3973
-
-
Marsili, E.1
Baron, D.B.2
Shikhare, I.D.3
Coursolle, D.4
Gralnick, J.A.5
Bond, D.R.6
-
39
-
-
84879841672
-
Analyses ultramicroelectrochimiques des reactions dans l'acetonitrile et le dichloromethane en absence d'electrolyte
-
Application aux reactions d'extraction liquide-liquide par paire d'ions et par complexation. in: Chimie Physique pour l'Environnement, Vol. Docteur, Nancy Universite. Nancy.
-
Mignano, L. 1995. Analyses ultramicroelectrochimiques des reactions dans l'acetonitrile et le dichloromethane en absence d'electrolyte. Application aux reactions d'extraction liquide-liquide par paire d'ions et par complexation. in: Chimie Physique pour l'Environnement, Vol. Docteur, Nancy Universite. Nancy.
-
(1995)
-
-
Mignano, L.1
-
40
-
-
34547140332
-
The biocompatibility microorganisms-carbon nanostructures for applications in microbial fuel cells
-
Morozan A., Stamatin L., Nastase F., Dumitru A., Vulpe S., Nastase C., Stamatin I., Scott K. The biocompatibility microorganisms-carbon nanostructures for applications in microbial fuel cells. Phys. Status Solidi A 2007, 204:1797-1803.
-
(2007)
Phys. Status Solidi A
, vol.204
, pp. 1797-1803
-
-
Morozan, A.1
Stamatin, L.2
Nastase, F.3
Dumitru, A.4
Vulpe, S.5
Nastase, C.6
Stamatin, I.7
Scott, K.8
-
41
-
-
33644498839
-
Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells
-
Oh S.E., Logan B.E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol. 2006, 70:162-169.
-
(2006)
Appl. Microbiol. Biotechnol.
, vol.70
, pp. 162-169
-
-
Oh, S.E.1
Logan, B.E.2
-
42
-
-
84859130349
-
Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters
-
Pant D., Singh A., Van Bogaert G., Irving Olsen S., Singh Nigam P., Diels L., Vanbroekhoven K. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv. 2012, 2:1248-1263.
-
(2012)
RSC Adv.
, vol.2
, pp. 1248-1263
-
-
Pant, D.1
Singh, A.2
Van Bogaert, G.3
Irving Olsen, S.4
Singh Nigam, P.5
Diels, L.6
Vanbroekhoven, K.7
-
43
-
-
74549151753
-
A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
-
Pant D., Van Bogaert G., Diels L., Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 2010, 101:1533-1543.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 1533-1543
-
-
Pant, D.1
Van Bogaert, G.2
Diels, L.3
Vanbroekhoven, K.4
-
44
-
-
79958722404
-
Anode and cathode materials characterization for a microbial fuel cell in half cell configuration
-
Pant D., Van Bogaert G., Porto-Carrero C., Diels L., Vanbroekhoven K. Anode and cathode materials characterization for a microbial fuel cell in half cell configuration. Water Sci. Technol. 2011, 63:2457-2461.
-
(2011)
Water Sci. Technol.
, vol.63
, pp. 2457-2461
-
-
Pant, D.1
Van Bogaert, G.2
Porto-Carrero, C.3
Diels, L.4
Vanbroekhoven, K.5
-
45
-
-
69749117570
-
Influence of nanophase titania topography on bacterial attachment and metabolism
-
Park M.R., Banks M.K., Applegate B., Webster T.J. Influence of nanophase titania topography on bacterial attachment and metabolism. Int. J. Nanomedicine 2008, 3:497-504.
-
(2008)
Int. J. Nanomedicine
, vol.3
, pp. 497-504
-
-
Park, M.R.1
Banks, M.K.2
Applegate, B.3
Webster, T.J.4
-
46
-
-
84855168843
-
Ultra microelectrodes increase the current density provided by electroactive biofilms by improving their electron transport ability
-
Pocaznoi D., Erable B., Delia M.-L., Bergel A. Ultra microelectrodes increase the current density provided by electroactive biofilms by improving their electron transport ability. Energy Environ. Sci. 2012, 5:5287-5296.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 5287-5296
-
-
Pocaznoi, D.1
Erable, B.2
Delia, M.-L.3
Bergel, A.4
-
47
-
-
70350455268
-
A 1.5 [small micro]L microbial fuel cell for on-chip bioelectricity generation
-
Qian F., Baum M., Gu Q., Morse D.E. A 1.5 [small micro]L microbial fuel cell for on-chip bioelectricity generation. Lab Chip 2009, 9:3076-3081.
-
(2009)
Lab Chip
, vol.9
, pp. 3076-3081
-
-
Qian, F.1
Baum, M.2
Gu, Q.3
Morse, D.E.4
-
48
-
-
79955009720
-
A microfluidic microbial fuel cell fabricated by soft lithography
-
Qian F., He Z., Thelen M.P., Li Y. A microfluidic microbial fuel cell fabricated by soft lithography. Bioresour. Technol. 2011, 102:5836-5840.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 5836-5840
-
-
Qian, F.1
He, Z.2
Thelen, M.P.3
Li, Y.4
-
49
-
-
34249326597
-
Carbon nanotube/polyaniline composite as anode material for microbial fuel cells
-
Qiao Y., Li C.M., Bao S.-J., Bao Q.-L. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 2007, 170:79-84.
-
(2007)
J. Power Sources
, vol.170
, pp. 79-84
-
-
Qiao, Y.1
Li, C.M.2
Bao, S.-J.3
Bao, Q.-L.4
-
50
-
-
19444374840
-
Continuous microbial fuel cells convert carbohydrates to electricity
-
Rabaey I., Ossieur W., Verhaege M., Verstraete W. Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci. Technol. 2005, 52:515-523.
-
(2005)
Water Sci. Technol.
, vol.52
, pp. 515-523
-
-
Rabaey, I.1
Ossieur, W.2
Verhaege, M.3
Verstraete, W.4
-
51
-
-
0141565121
-
A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency
-
Rabaey K., Lissens G., Siciliano S.D., Verstraete W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 2003, 25:1531-1535.
-
(2003)
Biotechnol. Lett.
, vol.25
, pp. 1531-1535
-
-
Rabaey, K.1
Lissens, G.2
Siciliano, S.D.3
Verstraete, W.4
-
52
-
-
19444362807
-
Microbial fuel cells: performances and perspectives
-
Biofuels for Fuel Cells: Biomass Fermentation Towards Usage in Fuel (Eds.) P. Lens, P. Westermann, M. Haberbauer, A. Morino, IWA Publishing London, UK.
-
Rabaey, K., Lissens, G., Verstraete, W. 2005b. Microbial fuel cells: performances and perspectives. in: Biofuels for Fuel Cells: Biomass Fermentation Towards Usage in Fuel (Eds.) P. Lens, P. Westermann, M. Haberbauer, A. Morino, IWA Publishing London, UK.
-
(2005)
-
-
Rabaey, K.1
Lissens, G.2
Verstraete, W.3
-
53
-
-
19444367096
-
Microbial fuel cells: novel biotechnology for energy generation
-
Rabaey K., Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005, 23:291-298.
-
(2005)
Trends Biotechnol.
, vol.23
, pp. 291-298
-
-
Rabaey, K.1
Verstraete, W.2
-
54
-
-
21344461500
-
Extracellular electron transfer via microbial nanowires
-
Reguera G., McCarthy K.D., Mehta T., Nicoll J.S., Tuominen M.T., Lovley D.R. Extracellular electron transfer via microbial nanowires. Nature 2005, 435:1098-1101.
-
(2005)
Nature
, vol.435
, pp. 1098-1101
-
-
Reguera, G.1
McCarthy, K.D.2
Mehta, T.3
Nicoll, J.S.4
Tuominen, M.T.5
Lovley, D.R.6
-
55
-
-
33751014053
-
Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells
-
Reguera G., Nevin K.P., Nicoll J.S., Covalla S.F., Woodard T.L., Lovley D.R. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 2006, 72:7345-7348.
-
(2006)
Appl. Environ. Microbiol.
, vol.72
, pp. 7345-7348
-
-
Reguera, G.1
Nevin, K.P.2
Nicoll, J.S.3
Covalla, S.F.4
Woodard, T.L.5
Lovley, D.R.6
-
56
-
-
42449164705
-
Electricity generation by Geobacter sulfurreducens attached to gold electrodes
-
Richter H., McCarthy K., Nevin K.P., Johnson J.P., Rotello V.M., Lovley D.R. Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 2008, 24:4376-4379.
-
(2008)
Langmuir
, vol.24
, pp. 4376-4379
-
-
Richter, H.1
McCarthy, K.2
Nevin, K.P.3
Johnson, J.P.4
Rotello, V.M.5
Lovley, D.R.6
-
57
-
-
33646030010
-
High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10
-
Ringeisen B.R., Henderson E., Wu P.K., Pietron J., Ray R., Little B., Biffinger J.C., Jones-Meehan J.M. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol. 2006, 40:2629-2634.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 2629-2634
-
-
Ringeisen, B.R.1
Henderson, E.2
Wu, P.K.3
Pietron, J.4
Ray, R.5
Little, B.6
Biffinger, J.C.7
Jones-Meehan, J.M.8
-
58
-
-
84877084652
-
Microbial bioanodes with high salinity tolerance for microbial fuel cells and microbial electrolysis cells
-
Rousseau R., Dominguez X., Délia M.-L., Bergel A. Microbial bioanodes with high salinity tolerance for microbial fuel cells and microbial electrolysis cells. Electrochem. Commun. 2013, 32:1-4.
-
(2013)
Electrochem. Commun.
, vol.32
, pp. 1-4
-
-
Rousseau, R.1
Dominguez, X.2
Délia, M.-L.3
Bergel, A.4
-
59
-
-
33748545968
-
Effects of membrane cation transport on pH and microbial fuel cell performance
-
Rozendal R.A., Hamelers H.V., Buisman C.J. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 2006, 40:5206-5211.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 5206-5211
-
-
Rozendal, R.A.1
Hamelers, H.V.2
Buisman, C.J.3
-
60
-
-
34447523820
-
Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
-
Schroder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 2007, 9:2619-2629.
-
(2007)
Phys. Chem. Chem. Phys.
, vol.9
, pp. 2619-2629
-
-
Schroder, U.1
-
61
-
-
17744405443
-
A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude
-
Schroder U., Niessen J., Scholz F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed. Engl. 2003, 42:2880-2883.
-
(2003)
Angew. Chem. Int. Ed. Engl.
, vol.42
, pp. 2880-2883
-
-
Schroder, U.1
Niessen, J.2
Scholz, F.3
-
62
-
-
55049113854
-
Development of carbon nanotubes and nanofluids based microbial fuel cell
-
Sharma T., Mohana Reddy A.L., Chandra T.S., Ramaprabhu S. Development of carbon nanotubes and nanofluids based microbial fuel cell. Int. J. Hydrogen Energy 2008, 33:6749-6754.
-
(2008)
Int. J. Hydrogen Energy
, vol.33
, pp. 6749-6754
-
-
Sharma, T.1
Mohana Reddy, A.L.2
Chandra, T.S.3
Ramaprabhu, S.4
-
63
-
-
57449093098
-
A microfabricated PDMS microbial fuel cell
-
Siu C.P.B., Mu C. A microfabricated PDMS microbial fuel cell. J. Microelectromech. Syst. 2008, 17:1329-1341.
-
(2008)
J. Microelectromech. Syst.
, vol.17
, pp. 1329-1341
-
-
Siu, C.P.B.1
Mu, C.2
-
64
-
-
84861911299
-
Bioelectrochemical systems: an outlook for practical applications
-
Sleutels T.H., Ter Heijne A., Buisman C.J., Hamelers H.V. Bioelectrochemical systems: an outlook for practical applications. Chem. Sus. Chem. 2012, 5:1012-1019.
-
(2012)
Chem. Sus. Chem.
, vol.5
, pp. 1012-1019
-
-
Sleutels, T.H.1
Ter Heijne, A.2
Buisman, C.J.3
Hamelers, H.V.4
-
65
-
-
47049116935
-
Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria
-
Torres C.I., Kato Marcus A., Rittmann B.E. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng. 2008, 100:872-881.
-
(2008)
Biotechnol. Bioeng.
, vol.100
, pp. 872-881
-
-
Torres, C.I.1
Kato Marcus, A.2
Rittmann, B.E.3
-
66
-
-
57449121631
-
- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells
-
- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells. Environ. Sci. Technol. 2008, 42:8773-8777.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 8773-8777
-
-
Torres, C.I.1
Lee, H.-S.2
Rittmann, B.E.3
-
67
-
-
71549170875
-
A kinetic perspective on extracellular electron transfer by anode-respiring bacteria
-
Torres C.I., Marcus A.K., Lee H.S., Parameswaran P., Krajmalnik-Brown R., Rittmann B.E. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev. 2010, 34:3-17.
-
(2010)
FEMS Microbiol. Rev.
, vol.34
, pp. 3-17
-
-
Torres, C.I.1
Marcus, A.K.2
Lee, H.S.3
Parameswaran, P.4
Krajmalnik-Brown, R.5
Rittmann, B.E.6
-
68
-
-
77957369865
-
Micro-sized microbial fuel cell: A mini-review
-
Wang H.-Y., Bernarda A., Huang C.-Y., Lee D.-J., Chang J.-S. Micro-sized microbial fuel cell: A mini-review. Bioresour. Technol. 2011, 102:235-243.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 235-243
-
-
Wang, H.-Y.1
Bernarda, A.2
Huang, C.-Y.3
Lee, D.-J.4
Chang, J.-S.5
-
69
-
-
85015506276
-
Membraneless microfluidic microbial fuel cell for rapid detection of electrochemical activity of microorganism
-
Wang H.Y., Su J.Y. Membraneless microfluidic microbial fuel cell for rapid detection of electrochemical activity of microorganism. Bioresour. Technol. 2013, 26:00037.
-
(2013)
Bioresour. Technol.
, vol.26
, pp. 00037
-
-
Wang, H.Y.1
Su, J.Y.2
-
71
-
-
33746234733
-
Use of the atomic force microscope to determine the effect of substratum surface topography on the ease of bacterial removal
-
Whitehead K.A., Rogers D., Colligon J., Wright C., Verran J. Use of the atomic force microscope to determine the effect of substratum surface topography on the ease of bacterial removal. Colloids Surf. B. 2006, 51:44-53.
-
(2006)
Colloids Surf. B.
, vol.51
, pp. 44-53
-
-
Whitehead, K.A.1
Rogers, D.2
Colligon, J.3
Wright, C.4
Verran, J.5
-
72
-
-
33747117373
-
The origins and the future of microfluidics
-
Whitesides G.M. The origins and the future of microfluidics. Nature 2006, 442:368-373.
-
(2006)
Nature
, vol.442
, pp. 368-373
-
-
Whitesides, G.M.1
-
73
-
-
0034802766
-
Soft lithography in biology and biochemistry
-
Whitesides G.M., Ostuni E., Takayama S., Jiang X., Ingber D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 2001, 3:335-373.
-
(2001)
Annu. Rev. Biomed. Eng.
, vol.3
, pp. 335-373
-
-
Whitesides, G.M.1
Ostuni, E.2
Takayama, S.3
Jiang, X.4
Ingber, D.E.5
-
74
-
-
0034272630
-
"Gastrobots"-benefits and challenges of microbial fuel cells in food powered robot applications
-
Wilkinson S. "Gastrobots"-benefits and challenges of microbial fuel cells in food powered robot applications. Auton. Robot 2000, 9:99-111.
-
(2000)
Auton. Robot
, vol.9
, pp. 99-111
-
-
Wilkinson, S.1
-
75
-
-
80755153741
-
Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells
-
Zhang F., Pant D., Logan B.E. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosens. Bioelectron. 2011, 30:49-55.
-
(2011)
Biosens. Bioelectron.
, vol.30
, pp. 49-55
-
-
Zhang, F.1
Pant, D.2
Logan, B.E.3
|