메뉴 건너뛰기




Volumn 228, Issue , 2013, Pages 1-11

Characterization and comparison of the performance of two different separator types in air-cathode microbial fuel cell treating synthetic wastewater

Author keywords

Air cathode microbial fuel cell; Bioelectricity; Electrochemical impedance spectroscopy; Fumasep ; Sustainable energy production; Zirfon

Indexed keywords

AIR CATHODE; BETTER PERFORMANCE; ENERGY PRODUCTIONS; INTERNAL RESISTANCE; MAXIMUM POWER DENSITY; SUBSTRATE UTILIZATION; SUSTAINABLE ENERGY; SYNTHETIC WASTE WATER;

EID: 84878358411     PISSN: 13858947     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cej.2013.05.014     Document Type: Article
Times cited : (95)

References (39)
  • 1
    • 74449090973 scopus 로고    scopus 로고
    • A review on anaerobic aerobic treatment of industrial and municipal wastewater
    • Chan Y.J., Chong M.F., Law C.L., Hassell D.G. A review on anaerobic aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 2009, 155:1-18.
    • (2009) Chem. Eng. J. , vol.155 , pp. 1-18
    • Chan, Y.J.1    Chong, M.F.2    Law, C.L.3    Hassell, D.G.4
  • 2
    • 74549151753 scopus 로고    scopus 로고
    • A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
    • Pant D., Van Bogaert G., Diels L., Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 2010, 101:1533-1543.
    • (2010) Bioresour. Technol. , vol.101 , pp. 1533-1543
    • Pant, D.1    Van Bogaert, G.2    Diels, L.3    Vanbroekhoven, K.4
  • 5
    • 84867317699 scopus 로고    scopus 로고
    • The accurate use of impedance analysis for the study of microbial electrochemical systems
    • Dominguez-Benetton X., Sevda S., Vanbroekhoven K., Pant D. The accurate use of impedance analysis for the study of microbial electrochemical systems. Chem. Soc. Rev. 2012, 41:7228-7246.
    • (2012) Chem. Soc. Rev. , vol.41 , pp. 7228-7246
    • Dominguez-Benetton, X.1    Sevda, S.2    Vanbroekhoven, K.3    Pant, D.4
  • 7
    • 84859130349 scopus 로고    scopus 로고
    • Bioelectrochemical systems (BESs) for sustainable energy production and product recovery from organic wastes and industrial wastewaters
    • Pant D., Singh A., Van Bogaert G., Olsen S.I., Nigam P.S., Diels L., Vanbroekhoven K. Bioelectrochemical systems (BESs) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv. 2012, 4:1248-1263.
    • (2012) RSC Adv. , vol.4 , pp. 1248-1263
    • Pant, D.1    Singh, A.2    Van Bogaert, G.3    Olsen, S.I.4    Nigam, P.S.5    Diels, L.6    Vanbroekhoven, K.7
  • 8
    • 57049119571 scopus 로고    scopus 로고
    • The microbe electric: conversion of organic matter to electricity
    • Lovley D.R. The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotech. 2008, 19:564-571.
    • (2008) Curr. Opin. Biotech. , vol.19 , pp. 564-571
    • Lovley, D.R.1
  • 10
    • 41849128520 scopus 로고    scopus 로고
    • Forming electrochemically active biofilms from garden compost under chronoamperometry
    • Parot S., Delia M.L., Bergel A. Forming electrochemically active biofilms from garden compost under chronoamperometry. Bioresour. Technol. 2008, 99:4809-4816.
    • (2008) Bioresour. Technol. , vol.99 , pp. 4809-4816
    • Parot, S.1    Delia, M.L.2    Bergel, A.3
  • 11
    • 53049107478 scopus 로고    scopus 로고
    • On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells
    • Fricke K., Harnisch F., Schroder U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Environ. Sci. Technol. 2008, 1:144-147.
    • (2008) Environ. Sci. Technol. , vol.1 , pp. 144-147
    • Fricke, K.1    Harnisch, F.2    Schroder, U.3
  • 12
    • 33748549027 scopus 로고    scopus 로고
    • An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy
    • He Z., Wagner N., Minteer S.D., Angenent L.T. An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ. Sci. Technol. 2006, 40:5212-5217.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 5212-5217
    • He, Z.1    Wagner, N.2    Minteer, S.D.3    Angenent, L.T.4
  • 13
    • 58649118858 scopus 로고    scopus 로고
    • Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode
    • Kim J.R., Premier G.C., Hawkes F.R., Dinsdale R.M., Guwy A.J. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. J. Power Sources 2009, 187:393-399.
    • (2009) J. Power Sources , vol.187 , pp. 393-399
    • Kim, J.R.1    Premier, G.C.2    Hawkes, F.R.3    Dinsdale, R.M.4    Guwy, A.J.5
  • 14
    • 58249144863 scopus 로고    scopus 로고
    • The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions
    • Manohar A.K., Mansfeld F. The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochim. Acta 2009, 54:1664-1670.
    • (2009) Electrochim. Acta , vol.54 , pp. 1664-1670
    • Manohar, A.K.1    Mansfeld, F.2
  • 16
    • 34248174324 scopus 로고    scopus 로고
    • Production of electricity from the treatment of urban waste water using a microbial fuel cell
    • Rodrigo M.A., Cañizares P., Lobato L., Paz R., Sáez C., Linares J.J. Production of electricity from the treatment of urban waste water using a microbial fuel cell. J. Power Sources 2007, 169:198-204.
    • (2007) J. Power Sources , vol.169 , pp. 198-204
    • Rodrigo, M.A.1    Cañizares, P.2    Lobato, L.3    Paz, R.4    Sáez, C.5    Linares, J.J.6
  • 18
    • 77957150606 scopus 로고    scopus 로고
    • Use of novel permeable membrane and air cathodes in acetate microbial fuel cells
    • Pant D., Van Bogaert G., Smet M.D., Diels L., Vanbroekhoven K. Use of novel permeable membrane and air cathodes in acetate microbial fuel cells. Electrochim. Acta 2010, 55:7710-7716.
    • (2010) Electrochim. Acta , vol.55 , pp. 7710-7716
    • Pant, D.1    Van Bogaert, G.2    Smet, M.D.3    Diels, L.4    Vanbroekhoven, K.5
  • 19
    • 70350568781 scopus 로고    scopus 로고
    • Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell
    • Zhang F., Cheng S., Pant D., Van Bogaert G., Logan B.E. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem. Commun. 2009, 11:2177-2179.
    • (2009) Electrochem. Commun. , vol.11 , pp. 2177-2179
    • Zhang, F.1    Cheng, S.2    Pant, D.3    Van Bogaert, G.4    Logan, B.E.5
  • 20
    • 80755153741 scopus 로고    scopus 로고
    • Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells
    • Zhang F., Pant D., Logan B. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosens. Bioelectron. 2011, 30:49-55.
    • (2011) Biosens. Bioelectron. , vol.30 , pp. 49-55
    • Zhang, F.1    Pant, D.2    Logan, B.3
  • 22
    • 34447285505 scopus 로고    scopus 로고
    • A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy
    • Du Z., Li H., Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 2007, 25(5):464-482.
    • (2007) Biotechnol. Adv. , vol.25 , Issue.5 , pp. 464-482
    • Du, Z.1    Li, H.2    Gu, T.3
  • 23
    • 84859347092 scopus 로고    scopus 로고
    • Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater
    • Sevda S., Sreekrishnan T.R. Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater. J. Environ. Sci. Health., Part A 2012, 47:878-886.
    • (2012) J. Environ. Sci. Health., Part A , vol.47 , pp. 878-886
    • Sevda, S.1    Sreekrishnan, T.R.2
  • 24
    • 33846842443 scopus 로고    scopus 로고
    • Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells
    • Kim J.R., Cheng S., Oh S.E., Logan B.E. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 2007, 41:1004-1009.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 1004-1009
    • Kim, J.R.1    Cheng, S.2    Oh, S.E.3    Logan, B.E.4
  • 25
    • 47049116935 scopus 로고    scopus 로고
    • Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria
    • Torres C.I., Marcus A.K., Rittmann B.E. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng. 2008, 100:872-881.
    • (2008) Biotechnol. Bioeng. , vol.100 , pp. 872-881
    • Torres, C.I.1    Marcus, A.K.2    Rittmann, B.E.3
  • 26
    • 67349159394 scopus 로고    scopus 로고
    • Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems
    • Harnisch F., Warmbier R., Schneider R., Schröder U. Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems. Bioelectrochemistry 2009, 75:136-141.
    • (2009) Bioelectrochemistry , vol.75 , pp. 136-141
    • Harnisch, F.1    Warmbier, R.2    Schneider, R.3    Schröder, U.4
  • 27
    • 22344440626 scopus 로고    scopus 로고
    • Electricity generation from artificial wastewater using an upflow microbial fuel cell
    • He Z., Minteer S.D., Angenent L.T. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol. 2005, 39:5262-5267.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 5262-5267
    • He, Z.1    Minteer, S.D.2    Angenent, L.T.3
  • 29
    • 33644498839 scopus 로고    scopus 로고
    • Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells
    • Oh S.E., Logan B.E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol. 2006, 70:162-169.
    • (2006) Appl. Microbiol. Biotechnol. , vol.70 , pp. 162-169
    • Oh, S.E.1    Logan, B.E.2
  • 30
    • 77649234772 scopus 로고    scopus 로고
    • Improved energy output levels from small-scale microbial fuel cells
    • Ieropoulos I., Greenman J., Melhuish C. Improved energy output levels from small-scale microbial fuel cells. Bioelectrochemistry 2009, 78:44-50.
    • (2009) Bioelectrochemistry , vol.78 , pp. 44-50
    • Ieropoulos, I.1    Greenman, J.2    Melhuish, C.3
  • 31
    • 33748562194 scopus 로고    scopus 로고
    • A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells
    • Ter Heijne A., Hamelers H.V.M., Wilde V.D., Rozendal R.A., Buisman C.J.N. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ. Sci. Technol. 2006, 40:5200-5205.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 5200-5205
    • Ter Heijne, A.1    Hamelers, H.V.M.2    Wilde, V.D.3    Rozendal, R.A.4    Buisman, C.J.N.5
  • 33
    • 34248229805 scopus 로고    scopus 로고
    • Tubular membrane cathodes for scalable power generation in microbial fuel cells
    • Zuo Y., Cheng S., Call D., Logan B.E. Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environ. Sci. Technol. 2007, 41:3347-3353.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 3347-3353
    • Zuo, Y.1    Cheng, S.2    Call, D.3    Logan, B.E.4
  • 34
    • 77957338115 scopus 로고    scopus 로고
    • Recent advances in the separators for microbial fuel cells
    • Li W.W., Sheng G.P., Liu X.W., Yu H.Q. Recent advances in the separators for microbial fuel cells. Bioresour. Technol. 2011, 102:244-252.
    • (2011) Bioresour. Technol. , vol.102 , pp. 244-252
    • Li, W.W.1    Sheng, G.P.2    Liu, X.W.3    Yu, H.Q.4
  • 35
    • 33748545968 scopus 로고    scopus 로고
    • Effects of membrane cation transport on pH and microbial fuel cell performance
    • Rozendal R.A., Hamelers H.V.M., Buisman C.J.N. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 2006, 40(17):5206-5211.
    • (2006) Environ. Sci. Technol. , vol.40 , Issue.17 , pp. 5206-5211
    • Rozendal, R.A.1    Hamelers, H.V.M.2    Buisman, C.J.N.3
  • 37
    • 58249144863 scopus 로고    scopus 로고
    • The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions
    • Manohar M.K., Mansfeld F. The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochim. Acta 2009, 54:1664-1670.
    • (2009) Electrochim. Acta , vol.54 , pp. 1664-1670
    • Manohar, M.K.1    Mansfeld, F.2
  • 38
    • 79958722404 scopus 로고    scopus 로고
    • Anode and cathode materials characterization for a microbial fuel cell in half cell configuration
    • Pant D., Van Bogaert G., Porto-Carrero C., Diels L., Vanbroekhoven K. Anode and cathode materials characterization for a microbial fuel cell in half cell configuration. Water Sci. Technol. 2011, 63(10):2457-2461.
    • (2011) Water Sci. Technol. , vol.63 , Issue.10 , pp. 2457-2461
    • Pant, D.1    Van Bogaert, G.2    Porto-Carrero, C.3    Diels, L.4    Vanbroekhoven, K.5
  • 39
    • 80055041333 scopus 로고    scopus 로고
    • Bacterial bioflims: the powerhouse of a microbial fuel cell
    • Franks A.E., Malvankar N., Nevin K.P. Bacterial bioflims: the powerhouse of a microbial fuel cell. Biofuels 2010, 14:589-604.
    • (2010) Biofuels , vol.14 , pp. 589-604
    • Franks, A.E.1    Malvankar, N.2    Nevin, K.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.