-
1
-
-
84944952974
-
-
PCC-ISES datasheet, www.secure-a-link.com /pdfs/isespdf/ isesdata.pdf.
-
-
-
-
2
-
-
77956052389
-
A scalable architecture for Montgomery multiplication
-
Springer-Verlag, Cryptographic Hardware and Embedded Systems-CHES 1999
-
A. F. Tenca and Ç. K. Koç. A scalable architecture for Montgomery multiplication. Lecture Notes in Computer Science, Springer-Verlag, (1717):94–108, 1999. Cryptographic Hardware and Embedded Systems-CHES 1999.
-
(1999)
Lecture Notes in Computer Science
, vol.1717
, pp. 94-108
-
-
Tenca, A.F.1
Koç, Ç.K.2
-
4
-
-
0027606916
-
Hardware implementation of Montgomery’s modular multiplication algorithm
-
93
-
S.E. Eldridge and C.D. Walter. Hardware implementation of Montgomery’s modular multiplication algorithm. IEEE Transactions on Computers, (42):693–9, 93.
-
IEEE Transactions on Computers
, vol.42
, pp. 693-699
-
-
Eldridge, S.E.1
Walter, C.D.2
-
5
-
-
68549115194
-
A scalable and unified multiplier architecture for finite fields GF(P) and GF(2m)
-
Springer- Verlag,Cryptographic Hardware and Embedded Systems-CHES
-
E. Savaç, A.F. Tenca, and Ç.K. Koç. A scalable and unified multiplier architecture for finite fields GF(p) and GF(2m). Lecture Notes in Computer Science, Springer- Verlag,Cryptographic Hardware and Embedded Systems-CHES 2000, (1965):281–296, 2000.
-
(2000)
Lecture Notes in Computer Science
, vol.2000
, Issue.1965
, pp. 281-296
-
-
Savaç, E.1
Tenca, A.F.2
Koç, Ç.K.3
-
7
-
-
68549090587
-
Montgomery exponentiation with no final subtractions: Improved results
-
Springer- Verlag, 2000. Cryptographic Hardware and Embedded Systems- CHES
-
G. Hachez and J.-J. Quisquater. Montgomery exponentiation with no final subtractions: Improved results. Lecture Notes in Computer Science, Springer- Verlag, (1965):293–301, 2000. Cryptographic Hardware and Embedded Systems- CHES 2000.
-
(2000)
Lecture Notes in Computer Science
, vol.1965
, pp. 293-301
-
-
Hachez, G.1
Quisquater, J.-J.2
-
8
-
-
0038462777
-
Systolic-arrays for modular exponentiation using Montgomery method
-
Springer- Verlag, 1981-1996. presented in Rumpsession of Eurocrypt, May 24-28
-
K. Iwamura, T. Matsumoto, and H. Imai. Systolic-arrays for modular exponentiation using Montgomery method. Lecture Notes in Computer Science, Springer- Verlag, 1440:477–481, 1981-1996. presented in Rumpsession of Eurocrypt 1992, May 24-28.
-
(1992)
Lecture Notes in Computer Science
, vol.1440
, pp. 477-481
-
-
Iwamura, K.1
Matsumoto, T.2
Imai, H.3
-
9
-
-
85007412053
-
High-speed implementation methods for RSA scheme
-
Springer-Verlag, Advances in Cryptology-EUROCRYPT 92
-
K. Iwamura, T. Matsumoto, and H. Imai. High-speed implementation methods for RSA scheme. Lecture Notes in Computer Science, Springer-Verlag, 658:221–238, 1992. Advances in Cryptology-EUROCRYPT 92.
-
(1992)
Lecture Notes in Computer Science
, vol.658
, pp. 221-238
-
-
Iwamura, K.1
Matsumoto, T.2
Imai, H.3
-
10
-
-
0028383479
-
Montgomery modular multiplication method and systolic arrays suitable for modular exponentiation
-
K. Iwamura, T. Matsumoto, and H. Imai. Montgomery modular multiplication method and systolic arrays suitable for modular exponentiation. Electronics and Communications in Japan, 77(3):40–50, 1994.
-
(1994)
Electronics and Communications in Japan
, vol.77
, Issue.3
, pp. 40-50
-
-
Iwamura, K.1
Matsumoto, T.2
Imai, H.3
-
11
-
-
84943632039
-
Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other systems
-
Springer-Verlag, Advances in Cryptology-CRYPTO 96
-
P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other systems. Lecture Notes in Computer Science, Springer-Verlag, pages 104–113, 1996. Advances in Cryptology-CRYPTO 96.
-
(1996)
Lecture Notes in Computer Science
, pp. 104-113
-
-
Kocher, P.1
-
13
-
-
84939573910
-
Differential power analysis
-
Springer-Verlag, Advances in Cryptology- CRYPTO 99
-
P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. Lecture Notes in Computer Science, Springer-Verlag, pages 388–397, 1999. Advances in Cryptology- CRYPTO 99.
-
(1999)
Lecture Notes in Computer Science
, pp. 388-397
-
-
Kocher, P.1
Jaffe, J.2
Jun, B.3
-
14
-
-
0028482946
-
A systolic, linear-array multiplier for a class of right-shift algorithms
-
Peter Kornerup. A systolic, linear-array multiplier for a class of right-shift algorithms. IEEE Transactions on Computers, 43(8):892–898, August 1994.
-
(1994)
IEEE Transactions on Computers
, vol.43
, Issue.8
, pp. 892-898
-
-
Kornerup, P.1
-
17
-
-
84966243285
-
Modular multiplication without trial division
-
P. Montgomery. Modular multiplication without trial division. Mathematics of Computation, Vol. 44:519–521, 1985.
-
(1985)
Mathematics of Computation
, vol.44
, pp. 519-521
-
-
Montgomery, P.1
-
18
-
-
84944901460
-
High-radix design of a scalable modular multiplier
-
Springer-Verlag, 2001. Cryptographic Hardware and Embedded Systems-CHES
-
A. F. Tenca, Georgi Todorov, and Ç. K. Koç. High-radix design of a scalable modular multiplier. Lecture Notes in Computer Science, Springer-Verlag, (2162):189–205, 2001. Cryptographic Hardware and Embedded Systems-CHES 2001.
-
(2001)
Lecture Notes in Computer Science
, vol.2162
, pp. 189-205
-
-
Tenca, A.F.1
Todorov, G.2
Koç, Ç.K.3
-
20
-
-
84937552424
-
Scalable algorithm for Montgomery multiplication and its implementation on the coarse-grain reconfigurable chip
-
Springer-Verlag, Topics in Cryptology - CT-RSA 2001
-
E. Trichina and A. Tiountchik. Scalable algorithm for Montgomery multiplication and its implementation on the coarse-grain reconfigurable chip. Lecture Notes in Computer Science, Springer-Verlag, (2020):235–249, 2001. Topics in Cryptology - CT-RSA 2001.
-
(2001)
Lecture Notes in Computer Science
, vol.2020
, pp. 235-249
-
-
Trichina, E.1
Tiountchik, A.2
-
21
-
-
0033204468
-
Montgomery exponentiation needs no final subtraction
-
October
-
C.D. Walter. Montgomery exponentiation needs no final subtraction. Electronic letters, 35(21):1831–1832, October 1999.
-
(1999)
Electronic Letters
, vol.35
, Issue.21
, pp. 1831-1832
-
-
Walter, C.D.1
-
22
-
-
0034264735
-
Improved linear systolic array for fast modular exponentiation
-
September
-
C.D. Walter. Improved linear systolic array for fast modular exponentiation. IEEE Computers and Digital Techniques, 147(5):323–328, September 2000.
-
(2000)
IEEE Computers and Digital Techniques
, vol.147
, Issue.5
, pp. 323-328
-
-
Walter, C.D.1
-
23
-
-
84944900219
-
Precise bounds for Montgomery modular multiplication and some potentially insecure RSA moduli
-
Springer- Verlag, RSA 2002 Cryptographers’ track, (This Volume)
-
C.D. Walter. Precise bounds for Montgomery modular multiplication and some potentially insecure RSA moduli. Lecture Notes in Computer Science, Springer- Verlag, RSA 2002 Cryptographers’ track (2271):30–39, 2002, (This Volume).
-
(2002)
Lecture Notes in Computer Science
, vol.2271
, pp. 30-39
-
-
Walter, C.D.1
-
25
-
-
84937560280
-
Distinguishing exponent digits by observing modular subtractions
-
Springer-Verlag, Topics in Cryptology – CT-RSA 2001
-
C.D. Walter and S. Thompson. Distinguishing exponent digits by observing modular subtractions. Lecture Notes in Computer Science, Springer-Verlag, (2020):192–207, 2001. Topics in Cryptology – CT-RSA 2001.
-
(2001)
Lecture Notes in Computer Science
, vol.2020
, pp. 192-207
-
-
Walter, C.D.1
Thompson, S.2
|