메뉴 건너뛰기




Volumn 45, Issue , 2016, Pages 131-141

Weighted joint-based human behavior recognition algorithm using only depth information for low-cost intelligent video-surveillance system

Author keywords

Behavior recognition; Human joint estimation; Human computer interaction (HCI); Video surveillance system

Indexed keywords

ALGORITHMS; COST BENEFIT ANALYSIS; COSTS; GEODESY; HUMAN COMPUTER INTERACTION; INFORMATION USE; MONITORING; SCALES (WEIGHING INSTRUMENTS); SECURITY SYSTEMS; SUPPORT VECTOR MACHINES; TEMPLATE MATCHING;

EID: 84944707108     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2015.09.035     Document Type: Article
Times cited : (53)

References (57)
  • 1
    • 84906782091 scopus 로고    scopus 로고
    • Human activity recognition from 3D data: A review
    • Aggarwal J., and Xia L. Human activity recognition from 3D data: A review Pattern Recognition Letters 48 2014 70 80
    • (2014) Pattern Recognition Letters , vol.48 , pp. 70-80
    • Aggarwal, J.1    Xia, L.2
  • 2
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman A., Braverman E.M., and Rozoner L. Theoretical foundations of the potential function method in pattern recognition learning Automation and Remote Control 25 1964 821 837
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, A.1    Braverman, E.M.2    Rozoner, L.3
  • 4
    • 0032786569 scopus 로고    scopus 로고
    • Improving support vector machine classifiers by modifying kernel functions
    • Amari S.-I., and Wu S. Improving support vector machine classifiers by modifying kernel functions Neural Networks 12 6 1999 783 789
    • (1999) Neural Networks , vol.12 , Issue.6 , pp. 783-789
    • Amari, S.-I.1    Wu, S.2
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests Machine Learning 45 1 2001 5 32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 10
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J. A tutorial on support vector machines for pattern recognition Data Mining and Knowledge Discovery 2 2 1998 121 167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.1
  • 12
    • 79955596544 scopus 로고    scopus 로고
    • Intelligent surveillance system with integration of heterogeneous information for intrusion detection
    • Castro J., Delgado M., Medina J., and Ruiz-Lozano M. Intelligent surveillance system with integration of heterogeneous information for intrusion detection Expert Systems with Applications 38 9 2011 11182 11192
    • (2011) Expert Systems with Applications , vol.38 , Issue.9 , pp. 11182-11192
    • Castro, J.1    Delgado, M.2    Medina, J.3    Ruiz-Lozano, M.4
  • 14
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., and Vapnik V. Support-vector networks Machine Learning 20 3 1995 273 297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 19
    • 84890399408 scopus 로고    scopus 로고
    • Enhanced computer vision with microsoft kinect sensor: A review
    • Han J., Shao L., Xu D., and Shotton J. Enhanced computer vision with microsoft kinect sensor: a review IEEE Transactions on Cybernetics 43 5 2013 1318 1334
    • (2013) IEEE Transactions on Cybernetics , vol.43 , Issue.5 , pp. 1318-1334
    • Han, J.1    Shao, L.2    Xu, D.3    Shotton, J.4
  • 21
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C.-W., and Lin C.-J. A comparison of methods for multiclass support vector machines IEEE Transactions on Neural Networks 13 2 2002 415 425
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 27
    • 84944694720 scopus 로고    scopus 로고
    • Microsoft. Kinect for windows. Accessed 09.10.15
    • Microsoft. Kinect for windows. https://dev.windows.com/en-us/kinect/ Accessed 09.10.15.
  • 30
    • 84944694721 scopus 로고    scopus 로고
    • Openni nite. Accessed 09.10.15.
    • OpenNI. Openni nite. http://www.openni.ru/files/nite/ Accessed 09.10.15.
  • 32
    • 34548203757 scopus 로고    scopus 로고
    • Vision-based human motion analysis: An overview
    • Poppe R. Vision-based human motion analysis: an overview Computer Vision and Image Understanding 108 1 2007 4 18
    • (2007) Computer Vision and Image Understanding , vol.108 , Issue.1 , pp. 4-18
    • Poppe, R.1
  • 33
    • 77949275097 scopus 로고    scopus 로고
    • A survey on vision-based human action recognition
    • Poppe R. A survey on vision-based human action recognition Image and Vision Computing 28 6 2010 976 990
    • (2010) Image and Vision Computing , vol.28 , Issue.6 , pp. 976-990
    • Poppe, R.1
  • 34
    • 79957456055 scopus 로고    scopus 로고
    • A multi-gesture interaction system using a 3-D iris disk model for gaze estimation and an active appearance model for 3-D hand pointing
    • Reale M.J., Canavan S., Yin L., Hu K., and Hung T. A multi-gesture interaction system using a 3-D iris disk model for gaze estimation and an active appearance model for 3-D hand pointing IEEE Transactions on Multimedia 13 3 2011 474 486
    • (2011) IEEE Transactions on Multimedia , vol.13 , Issue.3 , pp. 474-486
    • Reale, M.J.1    Canavan, S.2    Yin, L.3    Hu, K.4    Hung, T.5
  • 35
    • 84880828099 scopus 로고    scopus 로고
    • Robust part-based hand gesture recognition using Kinect sensor
    • Ren Z., Yuan J., Meng J., and Zhang Z. Robust part-based hand gesture recognition using Kinect sensor IEEE Transactions on Multimedia 15 5 2013 1110 1120
    • (2013) IEEE Transactions on Multimedia , vol.15 , Issue.5 , pp. 1110-1120
    • Ren, Z.1    Yuan, J.2    Meng, J.3    Zhang, Z.4
  • 38
    • 84859817898 scopus 로고    scopus 로고
    • Human skeleton tracking from depth data using geodesic distances and optical flow
    • Schwarz L.A., Mkhitaryan A., Mateus D., and Navab N. Human skeleton tracking from depth data using geodesic distances and optical flow Image and Vision Computing 30 3 2012 217 226
    • (2012) Image and Vision Computing , vol.30 , Issue.3 , pp. 217-226
    • Schwarz, L.A.1    Mkhitaryan, A.2    Mateus, D.3    Navab, N.4
  • 43
    • 84944694722 scopus 로고    scopus 로고
    • Motion capture for the masses
    • iPi Soft LLC (2011). Motion capture for the masses.
    • (2011) IPi Soft LLC
  • 48
    • 84856337169 scopus 로고    scopus 로고
    • 3-D posture and gesture recognition for interactivity in smart spaces
    • Tran C., and Trivedi M.M. 3-D posture and gesture recognition for interactivity in smart spaces IEEE Transactions on Industrial Informatics 8 1 2012 178 187
    • (2012) IEEE Transactions on Industrial Informatics , vol.8 , Issue.1 , pp. 178-187
    • Tran, C.1    Trivedi, M.M.2
  • 55
    • 84882380908 scopus 로고    scopus 로고
    • RGB-depth feature for 3D human activity recognition
    • Yang Z., Zicheng L., and Hong C. RGB-depth feature for 3D human activity recognition China Communications 10 7 2013 93 103
    • (2013) China Communications , vol.10 , Issue.7 , pp. 93-103
    • Yang, Z.1    Zicheng, L.2    Hong, C.3
  • 56
    • 84860660860 scopus 로고    scopus 로고
    • Microsoft Kinect sensor and its effect
    • Zhang Z. Microsoft Kinect sensor and its effect IEEE Multimedia 19 2 2012 4 10
    • (2012) IEEE Multimedia , vol.19 , Issue.2 , pp. 4-10
    • Zhang, Z.1
  • 57
    • 84871395107 scopus 로고    scopus 로고
    • GPU-accelerated real-time tracking of full-body motion with multi-layer search
    • Zhang Z., Soon Seah H., Kwang Quah C., and Sun J. GPU-accelerated real-time tracking of full-body motion with multi-layer search IEEE Transactions on Multimedia 15 1 2013 106 119
    • (2013) IEEE Transactions on Multimedia , vol.15 , Issue.1 , pp. 106-119
    • Zhang, Z.1    Soon Seah, H.2    Kwang Quah, C.3    Sun, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.