메뉴 건너뛰기




Volumn 171, Issue , 2016, Pages 1344-1353

Exponential discriminant analysis for fault diagnosis

Author keywords

Exponential discriminant analysis; Fault diagnosis; Fisher discriminant analysis; Small sample size problem; Tennessee Eastman process

Indexed keywords

DISCRIMINANT ANALYSIS; ELECTRIC FAULT CURRENTS; FACE RECOGNITION; FAILURE ANALYSIS; FISHER INFORMATION MATRIX;

EID: 84944511398     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.07.099     Document Type: Article
Times cited : (51)

References (40)
  • 1
    • 0036466502 scopus 로고    scopus 로고
    • Dynamic process fault monitoring based on neural network and PCA
    • Chen J., Liao C.-M. Dynamic process fault monitoring based on neural network and PCA. J. Process Control 2002, 12(2):277-289.
    • (2002) J. Process Control , vol.12 , Issue.2 , pp. 277-289
    • Chen, J.1    Liao, C.-M.2
  • 2
    • 0026746940 scopus 로고
    • Optimal Fisher discriminant analysis using the rank decomposition
    • Cheng Y.-Q., Zhuang Y.-M., Yang J.-Y. Optimal Fisher discriminant analysis using the rank decomposition. Pattern Recognit. 1992, 25(1):101-111.
    • (1992) Pattern Recognit. , vol.25 , Issue.1 , pp. 101-111
    • Cheng, Y.-Q.1    Zhuang, Y.-M.2    Yang, J.-Y.3
  • 3
    • 0242526839 scopus 로고    scopus 로고
    • Genetic algorithms combined with discriminant analysis for key variable identification
    • Chiang L.H., Pell R.J. Genetic algorithms combined with discriminant analysis for key variable identification. J. Process Control 2004, 14(2):143-155.
    • (2004) J. Process Control , vol.14 , Issue.2 , pp. 143-155
    • Chiang, L.H.1    Pell, R.J.2
  • 5
    • 84884155797 scopus 로고    scopus 로고
    • Nonlinear process fault pattern recognition using statistics kernel PCA similarity factor
    • Deng X., Tian X. Nonlinear process fault pattern recognition using statistics kernel PCA similarity factor. Neurocomputing 2013, 121:298-308.
    • (2013) Neurocomputing , vol.121 , pp. 298-308
    • Deng, X.1    Tian, X.2
  • 6
    • 84866759750 scopus 로고    scopus 로고
    • A survey of the application of basic data-driven and model-based methods in process monitoring and fault diagnosis
    • S. Ding, P. Zhang, E. Ding, P. Engel, W. Gui, A survey of the application of basic data-driven and model-based methods in process monitoring and fault diagnosis. In: Proceedings of the 18th IFAC World Congress, 2011.
    • (2011) Proceedings of the 18th IFAC World Congress
    • Ding, S.1    Zhang, P.2    Ding, E.3    Engel, P.4    Gui, W.5
  • 9
    • 84925220164 scopus 로고    scopus 로고
    • Adaptive total PLS based quality-relevant process monitoring with application to the Tennessee Eastman process
    • J. Dong, K. Zhang, Y. Huang, G. Li, K. Peng, Adaptive total PLS based quality-relevant process monitoring with application to the Tennessee Eastman process. Neurocomputing 154, 2015, 77-85.
    • (2015) Neurocomputing , vol.154 , pp. 77-85
    • Dong, J.1    Zhang, K.2    Huang, Y.3    Li, G.4    Peng, K.5
  • 10
    • 74249108882 scopus 로고    scopus 로고
    • Efficient recursive principal component analysis algorithms for process monitoring
    • Elshenawy L.M., Yin S., Naik A.S., Ding S.X. Efficient recursive principal component analysis algorithms for process monitoring. Ind. Eng. Chem. Res. 2009, 49(1):252-259.
    • (2009) Ind. Eng. Chem. Res. , vol.49 , Issue.1 , pp. 252-259
    • Elshenawy, L.M.1    Yin, S.2    Naik, A.S.3    Ding, S.X.4
  • 11
    • 0025421966 scopus 로고
    • Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-a survey and some new results
    • Frank P.M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-a survey and some new results. Automatica 1990, 26:459-474.
    • (1990) Automatica , vol.26 , pp. 459-474
    • Frank, P.M.1
  • 13
    • 84884138735 scopus 로고    scopus 로고
    • Comparison of FDA-based and PCA-based features in fault diagnosis of automobile gearboxes
    • Gharavian M., Ganj F.A., Ohadi A., Bafroui H.H. Comparison of FDA-based and PCA-based features in fault diagnosis of automobile gearboxes. Neurocomputing 2013, 121(0):150-159.
    • (2013) Neurocomputing , vol.121 , pp. 150-159
    • Gharavian, M.1    Ganj, F.A.2    Ohadi, A.3    Bafroui, H.H.4
  • 14
    • 14644427213 scopus 로고    scopus 로고
    • A new fault diagnosis method using fault directions in Fisher discriminant analysis
    • He Q.P., Qin S.J., Wang J. A new fault diagnosis method using fault directions in Fisher discriminant analysis. AIChE J. 2005, 51(2):555-571.
    • (2005) AIChE J. , vol.51 , Issue.2 , pp. 555-571
    • He, Q.P.1    Qin, S.J.2    Wang, J.3
  • 15
    • 27744565938 scopus 로고    scopus 로고
    • Solving the small sample size problem in face recognition using generalized discriminant analysis
    • Howland P., Wang J., Park H. Solving the small sample size problem in face recognition using generalized discriminant analysis. Pattern Recognit. 2006, 39(2):277-287.
    • (2006) Pattern Recognit. , vol.39 , Issue.2 , pp. 277-287
    • Howland, P.1    Wang, J.2    Park, H.3
  • 18
    • 84874122960 scopus 로고    scopus 로고
    • Sensor fault detection in coupled liquid tanks system
    • FIT
    • F. Kousar, M. Abid, A.Q. Khan, Sensor fault detection in coupled liquid tanks system. In: FIT, 2012, pp. 318-324.
    • (2012) , pp. 318-324
    • Kousar, F.1    Abid, M.2    Khan, A.Q.3
  • 19
    • 0026108818 scopus 로고
    • Multivariate statistical monitoring of process operating performance
    • Kresta J.V., MacGregor J.F., Marlin T.E. Multivariate statistical monitoring of process operating performance. Can. J. Chem. Eng. 1991, 69(1):35-47.
    • (1991) Can. J. Chem. Eng. , vol.69 , Issue.1 , pp. 35-47
    • Kresta, J.V.1    MacGregor, J.F.2    Marlin, T.E.3
  • 20
    • 84868677902 scopus 로고    scopus 로고
    • Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS
    • Lau C., Ghosh K., Hussain M., Che Hassan C. Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS. Chemom. Intell. Lab. Syst. 2013, 120:1-14.
    • (2013) Chemom. Intell. Lab. Syst. , vol.120 , pp. 1-14
    • Lau, C.1    Ghosh, K.2    Hussain, M.3    Che Hassan, C.4
  • 21
    • 50249126641 scopus 로고    scopus 로고
    • Kernel scatter-difference-based discriminant analysis for nonlinear fault diagnosis
    • Li J., Cui P. Kernel scatter-difference-based discriminant analysis for nonlinear fault diagnosis. Chemom. Intell. Lab. Syst. 2008, 94(1):80-86.
    • (2008) Chemom. Intell. Lab. Syst. , vol.94 , Issue.1 , pp. 80-86
    • Li, J.1    Cui, P.2
  • 22
    • 56349114104 scopus 로고    scopus 로고
    • Improved kernel Fisher discriminant analysis for fault diagnosis
    • Li J., Cui P. Improved kernel Fisher discriminant analysis for fault diagnosis. Expert Syst. Appl. 2009, 36(2):1423-1432.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 1423-1432
    • Li, J.1    Cui, P.2
  • 23
    • 84876744625 scopus 로고    scopus 로고
    • A review of discriminant analysis in high dimensions
    • Mai Q. A review of discriminant analysis in high dimensions. Wiley Interdiscip. Rev.: Comput. Stat. 2013, 5(3):190-197.
    • (2013) Wiley Interdiscip. Rev.: Comput. Stat. , vol.5 , Issue.3 , pp. 190-197
    • Mai, Q.1
  • 24
    • 0037106519 scopus 로고    scopus 로고
    • Multivariate process monitoring and fault diagnosis by multi-scale PCA
    • Misra M., Yue H.H., Qin S.J., Ling C. Multivariate process monitoring and fault diagnosis by multi-scale PCA. Comput. Chem. Eng. 2002, 26(9):1281-1293.
    • (2002) Comput. Chem. Eng. , vol.26 , Issue.9 , pp. 1281-1293
    • Misra, M.1    Yue, H.H.2    Qin, S.J.3    Ling, C.4
  • 25
    • 77950194058 scopus 로고    scopus 로고
    • Artificial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes
    • Springer-Verlag, Berlin, Heidelberg
    • K. Patan, Artificial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes, vol. 377, Springer-Verlag, Berlin, Heidelberg, 2008.
    • (2008) , vol.377
    • Patan, K.1
  • 26
    • 61849100967 scopus 로고    scopus 로고
    • Sparse linear discriminant analysis with applications to high dimensional low sample size data
    • Qiao Z., Zhou L., Huang J.Z. Sparse linear discriminant analysis with applications to high dimensional low sample size data. Int. J. Appl. Math. 2009, 39.
    • (2009) Int. J. Appl. Math. , pp. 39
    • Qiao, Z.1    Zhou, L.2    Huang, J.Z.3
  • 27
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring. basics and beyond
    • Qin S.J. Statistical process monitoring. basics and beyond. J. Chemom. 2003, 17(8-9):480-502.
    • (2003) J. Chemom. , vol.17 , Issue.8-9 , pp. 480-502
    • Qin, S.J.1
  • 28
    • 84869089680 scopus 로고    scopus 로고
    • Survey on data-driven industrial process monitoring and diagnosis
    • Qin S.J. Survey on data-driven industrial process monitoring and diagnosis. Annu. Rev. Control 2012, 36(2):220-234.
    • (2012) Annu. Rev. Control , vol.36 , Issue.2 , pp. 220-234
    • Qin, S.J.1
  • 29
    • 84882996883 scopus 로고    scopus 로고
    • Fault diagnosis based on PCA for sensors of laboratorial wastewater treatment process
    • Tao E., Shen W., Liu T., Chen X. Fault diagnosis based on PCA for sensors of laboratorial wastewater treatment process. Chemom. Intell. Lab. Syst. 2013, 128:49-55.
    • (2013) Chemom. Intell. Lab. Syst. , vol.128 , pp. 49-55
    • Tao, E.1    Shen, W.2    Liu, T.3    Chen, X.4
  • 31
    • 84899481774 scopus 로고    scopus 로고
    • A review on basic data-driven approaches for industrial process monitoring
    • Yin S., Ding S., Xie X., Luo H. A review on basic data-driven approaches for industrial process monitoring. IEEE Trans. Ind. Electron. 2014, 61(11):6418-6428.
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , Issue.11 , pp. 6418-6428
    • Yin, S.1    Ding, S.2    Xie, X.3    Luo, H.4
  • 32
    • 84866069902 scopus 로고    scopus 로고
    • A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
    • Yin S., Ding S.X., Haghani A., Hao H., Zhang P. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J. Process Control 2012, 22(9):1567-1581.
    • (2012) J. Process Control , vol.22 , Issue.9 , pp. 1567-1581
    • Yin, S.1    Ding, S.X.2    Haghani, A.3    Hao, H.4    Zhang, P.5
  • 33
    • 85027954372 scopus 로고    scopus 로고
    • Performance monitoring for vehicle suspension system via fuzzy positivistic C-means clustering based on accelerometer measurements
    • IEEE/ASME Trans. Mechatronics
    • S. Yin, Z. Huang, Performance monitoring for vehicle suspension system via fuzzy positivistic C-means clustering based on accelerometer measurements, IEEE/ASME Trans. Mechatronics (2014), http://dx.doi.org/10.1109/TMECH.2014.2358674.
    • (2014)
    • Yin, S.1    Huang, Z.2
  • 34
    • 84919906918 scopus 로고    scopus 로고
    • Data-based techniques focused on modern industry. an overview
    • Yin S., Li X., Gao H., Kaynak O. Data-based techniques focused on modern industry. an overview. IEEE Trans. Ind. Electron. 2015, 62(1):657-667.
    • (2015) IEEE Trans. Ind. Electron. , vol.62 , Issue.1 , pp. 657-667
    • Yin, S.1    Li, X.2    Gao, H.3    Kaynak, O.4
  • 35
    • 84922882884 scopus 로고    scopus 로고
    • Improved PLS focused on key-performance-indicator-related fault diagnosis
    • Yin S., Zhu X., Kaynak O. Improved PLS focused on key-performance-indicator-related fault diagnosis. IEEE Trans. Ind. Electron. 2015, 62(3):1651-1658.
    • (2015) IEEE Trans. Ind. Electron. , vol.62 , Issue.3 , pp. 1651-1658
    • Yin, S.1    Zhu, X.2    Kaynak, O.3
  • 36
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models Part I. using steady state fault signatures
    • Yoon S., MacGregor J.F. Fault diagnosis with multivariate statistical models Part I. using steady state fault signatures. J. Process Control 2001, 11(4):387-400.
    • (2001) J. Process Control , vol.11 , Issue.4 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2
  • 40
    • 84907764495 scopus 로고    scopus 로고
    • Semi-supervised Fisher discriminant analysis model for fault classification in industrial processes
    • Zhong S., Wen Q., Ge Z. Semi-supervised Fisher discriminant analysis model for fault classification in industrial processes. Chemom. Intell. Lab. Syst. 2014, 138:203-211.
    • (2014) Chemom. Intell. Lab. Syst. , vol.138 , pp. 203-211
    • Zhong, S.1    Wen, Q.2    Ge, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.