-
1
-
-
0037073941
-
Shape-controlled synthesis of gold and silver nanoparticles
-
Sun YG, Xia YN. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298(5601):2176–2179.
-
(2002)
Science
, vol.298
, Issue.5601
, pp. 2176-2179
-
-
Sun, Y.G.1
Xia, Y.N.2
-
2
-
-
84872523960
-
Toxicity of engineered nanomaterials: A physicochemical perspective
-
Podila R, Brown JM. Toxicity of engineered nanomaterials: a physicochemical perspective. J Biochem Mol Toxicol. 2013;27(1):50–55.
-
(2013)
J Biochem Mol Toxicol
, vol.27
, Issue.1
, pp. 50-55
-
-
Podila, R.1
Brown, J.M.2
-
3
-
-
77949913083
-
Toxicity issues in the application of carbon nanotubes to biological systems
-
Firme CP 3rd, Bandaru PR. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine. 2010;6(2):245–256.
-
(2010)
Nanomedicine
, vol.6
, Issue.2
, pp. 245-256
-
-
Firme, C.P.1
Bandaru, P.R.2
-
4
-
-
77952563342
-
What the cell “Sees” in bionanoscience
-
Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA. What the cell “Sees” in bionanoscience. J Am Chem Soc. 2010;132(16):5761–5768.
-
(2010)
J am Chem Soc
, vol.132
, Issue.16
, pp. 5761-5768
-
-
Walczyk, D.1
Bombelli, F.B.2
Monopoli, M.P.3
Lynch, I.4
Dawson, K.A.5
-
5
-
-
79960350694
-
A brief summary of carbon nanotubes science and technology: A health and safety perspective
-
Wick P, Clift MJD, Roesslein M, Rothen-Rutishauser B. A brief summary of carbon nanotubes science and technology: a health and safety perspective. Chem Sus Chem. 2011;4(7):905–911.
-
(2011)
Chem Sus Chem
, vol.4
, Issue.7
, pp. 905-911
-
-
Wick, P.1
Clift, M.2
Roesslein, M.3
Rothen-Rutishauser, B.4
-
6
-
-
67049099415
-
Material nanosizing effect on living organisms: Non-specific, biointeractive, physical size effects
-
Watari F, Takashi N, Yokoyama A, et al. Material nanosizing effect on living organisms: non-specific, biointeractive, physical size effects. J R Soc Interface. 2009;6:S371–S388.
-
(2009)
J R Soc Interface
, vol.6
, pp. S371-S388
-
-
Watari, F.1
Takashi, N.2
Yokoyama, A.3
-
7
-
-
67649491055
-
Understanding biophysicochemical interactions at the nano-bio interface
-
Nel AE, Maedler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543–557.
-
(2009)
Nat Mater
, vol.8
, Issue.7
, pp. 543-557
-
-
Nel, A.E.1
Maedler, L.2
Velegol, D.3
-
8
-
-
84910635710
-
Illuminating nano-bio interactions: A spectroscopic perspective
-
Podila R, Brown JM, Kahru A, Rao AM. Illuminating nano-bio interactions: a spectroscopic perspective. MRS Bulletin. 2014;39(11):990–995.
-
(2014)
MRS Bulletin
, vol.39
, Issue.11
, pp. 990-995
-
-
Podila, R.1
Brown, J.M.2
Kahru, A.3
Rao, A.M.4
-
9
-
-
39749107963
-
Protein-nanoparticle interactions
-
Lynch I, Dawson KA. Protein-nanoparticle interactions. Nano Today. 2008;3(1–2):40–47.
-
(2008)
Nano Today
, vol.3
, Issue.1-2
, pp. 40-47
-
-
Lynch, I.1
Dawson, K.A.2
-
10
-
-
33847789142
-
Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles
-
Cedervall T, Lynch I, Lindman S, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007;104(7):2050–2055.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, Issue.7
, pp. 2050-2055
-
-
Cedervall, T.1
Lynch, I.2
Lindman, S.3
-
11
-
-
84873853768
-
Biomolecular coronas provide the biological identity of nanosized materials
-
Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7(12):779–786.
-
(2012)
Nat Nanotechnol
, vol.7
, Issue.12
, pp. 779-786
-
-
Monopoli, M.P.1
Aberg, C.2
Salvati, A.3
Dawson, K.A.4
-
12
-
-
84896928606
-
Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles
-
Walkey CD, Olsen JB, Song F, et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 2014;8(3):2439–2455.
-
(2014)
ACS Nano
, vol.8
, Issue.3
, pp. 2439-2455
-
-
Walkey, C.D.1
Olsen, J.B.2
Song, F.3
-
13
-
-
84879350984
-
Comparison of nanotube-protein corona 23 composition in cell culture media
-
Shannahan JH, Brown JM, Chen R, et al. Comparison of nanotube-protein corona 23 composition in cell culture media. Small. 2013;9(12):2171–2181.
-
(2013)
Small
, vol.9
, Issue.12
, pp. 2171-2181
-
-
Shannahan, J.H.1
Brown, J.M.2
Chen, R.3
-
14
-
-
84883645340
-
Silver nanoparticle protein corona composition in cell culture media
-
Shannahan JH, Lai X, Ke PC, Podila R, Brown JM, Witzmann FA. Silver nanoparticle protein corona composition in cell culture media. PLoS One. 2013;8(9):e74001.
-
(2013)
Plos One
, vol.8
, Issue.9
-
-
Shannahan, J.H.1
Lai, X.2
Ke, P.C.3
Podila, R.4
Brown, J.M.5
Witzmann, F.A.6
-
15
-
-
84858591058
-
Identifying new therapeutic targets via modulation of protein corona formation by engineered nanoparticles
-
Arvizo RR, Giri K, Moyano D, et al. Identifying new therapeutic targets via modulation of protein corona formation by engineered nanoparticles. PLoS One. 2012;7(3):e33650.
-
(2012)
Plos One
, vol.7
, Issue.3
-
-
Arvizo, R.R.1
Giri, K.2
Moyano, D.3
-
16
-
-
84862646346
-
Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”
-
Mahon E, Salvati A, Baldelli Bombelli F, Lynch I, Dawson KA. Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J Control Release. 2012;161(2):164–174.
-
(2012)
J Control Release
, vol.161
, Issue.2
, pp. 164-174
-
-
Mahon, E.1
Salvati, A.2
Baldelli Bombelli, F.3
Lynch, I.4
Dawson, K.A.5
-
17
-
-
85017285722
-
Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors
-
Shannahan JH, Podila R, Aldossari AA, et al. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors. Toxicol Sci. 2015;143(1):136–146.
-
(2015)
Toxicol Sci
, vol.143
, Issue.1
, pp. 136-146
-
-
Shannahan, J.H.1
Podila, R.2
Aldossari, A.A.3
-
18
-
-
84856423834
-
Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment
-
Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41(7):2780–2799.
-
(2012)
Chem Soc Rev
, vol.41
, Issue.7
, pp. 2780-2799
-
-
Walkey, C.D.1
Chan, W.C.2
-
19
-
-
84879479222
-
Protein binding modulates the cellular uptake of silver nanoparticles into human cells: Implications for in vitro to in vivo extrapolations?
-
Monteiro-Riviere NA, Samberg ME, Oldenburg SJ, Riviere JE. Protein binding modulates the cellular uptake of silver nanoparticles into human cells: implications for in vitro to in vivo extrapolations? Toxicol Lett. 2013;220(3):286–293.
-
(2013)
Toxicol Lett
, vol.220
, Issue.3
, pp. 286-293
-
-
Monteiro-Riviere, N.A.1
Samberg, M.E.2
Oldenburg, S.J.3
Riviere, J.E.4
-
20
-
-
84938886533
-
Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation
-
In press
-
Aldossari AA, Shannahan JH, Podila R, Brown JM. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation. J Nanopart Res. 2015. In press 2015.
-
(2015)
J Nanopart Res
, vol.2015
-
-
Aldossari, A.A.1
Shannahan, J.H.2
Podila, R.3
Brown, J.M.4
-
21
-
-
80052774257
-
Simulated biological fluids with possible application in dissolution testing
-
Marques M, Loebenberg R, Almukainzi M. Simulated biological fluids with possible application in dissolution testing. Dissolut Technol. 2011;18(3):15–28.
-
(2011)
Dissolut Technol
, vol.18
, Issue.3
, pp. 15-28
-
-
Marques, M.1
Loebenberg, R.2
Almukainzi, M.3
-
22
-
-
84878457573
-
Interlaboratory evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: The NIEHS Nano GO Consortium
-
Xia T, Hamilton RF, Bonner JC, et al. Interlaboratory evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: the NIEHS Nano GO Consortium. Environ Health Perspect. 2013;121(6):683–690.
-
(2013)
Environ Health Perspect
, vol.121
, Issue.6
, pp. 683-690
-
-
Xia, T.1
Hamilton, R.F.2
Bonner, J.C.3
-
23
-
-
84871814375
-
Effects of surface functional groups on the formation of nanoparticle-protein corona
-
Podila R, Chen R, Ke PC, Brown JM, Rao AM. Effects of surface functional groups on the formation of nanoparticle-protein corona. Appl Phys Lett. 2012;101(26):263701.
-
(2012)
Appl Phys Lett
, vol.101
, Issue.26
-
-
Podila, R.1
Chen, R.2
Ke, P.C.3
Brown, J.M.4
Rao, A.M.5
-
24
-
-
84919941487
-
Quantifying spectral changes experienced by plasmonic nanoparticles in a cellular environment to inform biomedical nanoparticle design
-
Chen AL, Hu YS, Jackson MA, et al. Quantifying spectral changes experienced by plasmonic nanoparticles in a cellular environment to inform biomedical nanoparticle design. Nanoscale Res Lett. 2014;9(1):454.
-
(2014)
Nanoscale Res Lett
, vol.9
, Issue.1
-
-
Chen, A.L.1
Hu, Y.S.2
Jackson, M.A.3
-
25
-
-
2642583827
-
Plasmon hybridizaton in nanoparticle dimers.
-
Nordlander P, Oubre C, Prodan E, Li K, Stockman MI. Plasmon hybridizaton in nanoparticle dimers. Nano Lett. 2004;4(5):899–903.
-
(2004)
Nano Lett
, vol.4
, Issue.5
, pp. 899-903
-
-
Nordlander, P.1
Oubre, C.2
Prodan, E.3
Li, K.4
Stockman, M.I.5
-
26
-
-
0142020925
-
A hybridization model for the plasmon response of complex nanostructures
-
Prodan E, Radloff C, Halas NJ, Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science. 2003;302(5644):419–422.
-
(2003)
Science
, vol.302
, Issue.5644
, pp. 419-422
-
-
Prodan, E.1
Radloff, C.2
Halas, N.J.3
Nordlander, P.4
-
27
-
-
34247213988
-
Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis
-
Suzuki H, Toyooka T, Ibuki Y. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ Sci Technol. 2007;41(8):3018–3024.
-
(2007)
Environ Sci Technol
, vol.41
, Issue.8
, pp. 3018-3024
-
-
Suzuki, H.1
Toyooka, T.2
Ibuki, Y.3
-
28
-
-
84864833730
-
Detection of TiO2 nanoparticles in cells by flow cytometry
-
2nanoparticles in cells by flow cytometry. Methods Mol Biol. 2012;906:497–509.
-
(2012)
Methods Mol Biol
, vol.906
, pp. 497-509
-
-
Zucker, R.M.1
Daniel, K.M.2
-
29
-
-
84884976387
-
Detection of silver nanoparticles in cells by flow cytometry using light scatter and far-red fluorescence
-
Zucker RM, Daniel KM, Massaro EJ, Karafas SJ, Degn LL, Boyes WK. Detection of silver nanoparticles in cells by flow cytometry using light scatter and far-red fluorescence. Cytometry A. 2013;83(10):962–972.
-
(2013)
Cytometry A
, vol.83
, Issue.10
, pp. 962-972
-
-
Zucker, R.M.1
Daniel, K.M.2
Massaro, E.J.3
Karafas, S.J.4
Degn, L.L.5
Boyes, W.K.6
-
30
-
-
84910122442
-
Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation
-
Aldossari AA, Shannahana JH, Podila R, Brown JM. Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation. Toxicol Vitro. 2015;29(1):195–203.
-
(2015)
Toxicol Vitro
, vol.29
, Issue.1
, pp. 195-203
-
-
Aldossari, A.A.1
Shannahana, J.H.2
Podila, R.3
Brown, J.M.4
|