메뉴 건너뛰기




Volumn 26, Issue 43, 2015, Pages

Silica nanoparticles inhibit brown adipocyte differentiation via regulation of p38 phosphorylation

Author keywords

brown adipogenesis; nanotoxicity; p38; silica nanoparticles

Indexed keywords

CELL SIGNALING; MOLECULAR WEIGHT; PHOSPHORYLATION;

EID: 84944346066     PISSN: 09574484     EISSN: 13616528     Source Type: Journal    
DOI: 10.1088/0957-4484/26/43/435101     Document Type: Article
Times cited : (11)

References (50)
  • 1
    • 84872321275 scopus 로고    scopus 로고
    • Involvement of protein tyrosine phosphatases in adipogenesis: New anti-obesity targets?
    • Bae K-H, Kim W K and Lee S C 2012 Involvement of protein tyrosine phosphatases in adipogenesis: new anti-obesity targets? BMB Rep. 45 700
    • (2012) BMB Rep. , vol.45 , pp. 700
    • Bae, K.-H.1    Kim, W.K.2    Lee, S.C.3
  • 2
    • 84901351041 scopus 로고    scopus 로고
    • Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells
    • Park A, Kim W K and Bae K-H 2014 Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells World J. Stem Cells 6 33
    • (2014) World J. Stem Cells , vol.6 , pp. 33
    • Park, A.1    Kim, W.K.2    Bae, K.-H.3
  • 3
    • 64349105205 scopus 로고    scopus 로고
    • Identification and importance of brown adipose tissue in adult humans
    • Cypess A M et al 2009 Identification and importance of brown adipose tissue in adult humans N. Engl. J. Med. 360 1509
    • (2009) N. Engl. J. Med. , vol.360 , pp. 1509
    • Cypess, A.M.1
  • 4
    • 64349095231 scopus 로고    scopus 로고
    • Cold-activated brown adipose tissue in healthy men
    • van Marken Lichtenbelt W D et al 2009 Cold-activated brown adipose tissue in healthy men N. Engl. J. Med. 360 1500
    • (2009) N. Engl. J. Med. , vol.360 , pp. 1500
    • Van Marken Lichtenbelt, W.D.1
  • 6
    • 84868131670 scopus 로고    scopus 로고
    • Recruitment of brown adipose tissue as a therapy for obesity-associated diseases
    • Boss O and Farmer S R 2012 Recruitment of brown adipose tissue as a therapy for obesity-associated diseases Front Endocrinol. 3 14
    • (2012) Front Endocrinol. , vol.3 , pp. 14
    • Boss, O.1    Farmer, S.R.2
  • 7
    • 77950237717 scopus 로고    scopus 로고
    • The changed metabolic world with human brown adipose tissue: Therapeutic visions
    • Nedergaard J and Cannon B 2010 The changed metabolic world with human brown adipose tissue: therapeutic visions Cell Metab. 11 268
    • (2010) Cell Metab. , vol.11 , pp. 268
    • Nedergaard, J.1    Cannon, B.2
  • 10
    • 76749146390 scopus 로고    scopus 로고
    • Transcriptional factors that promote formation of white adipose tissue
    • White U A and Stephens J M 2010 Transcriptional factors that promote formation of white adipose tissue Mol. Cell Endocrinol. 318 10
    • (2010) Mol. Cell Endocrinol. , vol.318 , pp. 10
    • White, U.A.1    Stephens, J.M.2
  • 11
    • 84925849771 scopus 로고    scopus 로고
    • Recent advances in proteomic studies of adipose tissues and adipocytes
    • Kim E Y et al 2015 Recent advances in proteomic studies of adipose tissues and adipocytes Int. J. Mol. Sci. 16 4581
    • (2015) Int. J. Mol. Sci. , vol.16 , pp. 4581
    • Kim, E.Y.1
  • 13
    • 84857622034 scopus 로고    scopus 로고
    • Gold nanoparticles in biomedical applications: Recent advances and perspectives
    • Dykman L and Khlebtsov N 2012 Gold nanoparticles in biomedical applications: recent advances and perspectives Chem. Soc. Rev. 41 2256
    • (2012) Chem. Soc. Rev. , vol.41 , pp. 2256
    • Dykman, L.1    Khlebtsov, N.2
  • 15
    • 84855301792 scopus 로고    scopus 로고
    • Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo
    • Barandeh F et al 2012 Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo PLoS One 7 e29424
    • (2012) PLoS One , vol.7
    • Barandeh, F.1
  • 16
    • 84921693399 scopus 로고    scopus 로고
    • Titanium nanostructures for biomedical applications
    • Kulkarni M et al 2015 Titanium nanostructures for biomedical applications Nanotechnology 26 062002
    • (2015) Nanotechnology , vol.26 , Issue.6
    • Kulkarni, M.1
  • 17
    • 84930620488 scopus 로고    scopus 로고
    • The janus facet of nanomaterials
    • 2015
    • Kardos J et al 2015 The janus facet of nanomaterials Biomed. Res. Int. 2015 317184
    • (2015) Biomed. Res. Int. , vol.2015
    • Kardos, J.1
  • 19
    • 84867497797 scopus 로고    scopus 로고
    • Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: Protective effects of fisetin
    • McCarthy J, Inkielewicz-Stepniak I, Corbalan J J and Radomski M W 2012 Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: protective effects of fisetin Chem. Res. Toxicol. 25 2227
    • (2012) Chem. Res. Toxicol. , vol.25 , pp. 2227
    • McCarthy, J.1    Inkielewicz-Stepniak, I.2    Corbalan, J.J.3    Radomski, M.W.4
  • 21
    • 84889669590 scopus 로고    scopus 로고
    • Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent
    • Blechinger J et al 2013 Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent Small 9 3970
    • (2013) Small , vol.9 , pp. 3970
    • Blechinger, J.1
  • 24
    • 84912119625 scopus 로고    scopus 로고
    • Cerium oxide nanoparticles inhibit adipogenesis in rat mesenchymal stem cells: Potential therapeutic implications
    • Rocca A, Mattoli V, Mazzolai B and Ciofani G 2014 Cerium oxide nanoparticles inhibit adipogenesis in rat mesenchymal stem cells: potential therapeutic implications Pharm. Res. 31 2952
    • (2014) Pharm. Res. , vol.31 , pp. 2952
    • Rocca, A.1    Mattoli, V.2    Mazzolai, B.3    Ciofani, G.4
  • 25
    • 84872737240 scopus 로고    scopus 로고
    • Metallofullerene nanoparticles promote osteogenic differentiation of bone marrow stromal cells through BMP signaling pathway
    • Yang K et al 2013 Metallofullerene nanoparticles promote osteogenic differentiation of bone marrow stromal cells through BMP signaling pathway Nanoscale 5 1205
    • (2013) Nanoscale , vol.5 , pp. 1205
    • Yang, K.1
  • 26
    • 78649616737 scopus 로고    scopus 로고
    • Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway
    • Yi C, Liu D, Fong C C, Zhang J and Yang M 2010 Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway ACS Nano 4 6439
    • (2010) ACS Nano , vol.4 , pp. 6439
    • Yi, C.1    Liu, D.2    Fong, C.C.3    Zhang, J.4    Yang, M.5
  • 27
    • 84908377690 scopus 로고    scopus 로고
    • The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells
    • Ko W K et al 2015 The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells J. Colloid Interface Sci. 438 68
    • (2015) J. Colloid Interface Sci. , vol.438 , pp. 68
    • Ko, W.K.1
  • 28
    • 84901320890 scopus 로고    scopus 로고
    • Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentration
    • Qin H et al 2014 Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentration Int. J. Nanomedicine 9 2469
    • (2014) Int. J. Nanomedicine , vol.9 , pp. 2469
    • Qin, H.1
  • 29
    • 84901654948 scopus 로고    scopus 로고
    • Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway
    • Zhang D, Liu D, Zhang J, Fong C and Yang M 2014 Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway Mater. Sci. Eng. C 42 70
    • (2014) Mater. Sci. Eng. , vol.42 , pp. 70
    • Zhang, D.1    Liu, D.2    Zhang, J.3    Fong, C.4    Yang, M.5
  • 30
    • 84903460002 scopus 로고    scopus 로고
    • Bioactive silica nanoparticles promote osteoblast differentiation through stimulation of autophagy and direct association with LC3 and p62
    • Ha S W, Weitzmann M N and Beck G R Jr 2014 Bioactive silica nanoparticles promote osteoblast differentiation through stimulation of autophagy and direct association with LC3 and p62 ACS Nano 8 5898
    • (2014) ACS Nano , vol.8 , pp. 5898
    • Ha, S.W.1    Weitzmann, M.N.2    Beck, G.R.3
  • 31
    • 41849090084 scopus 로고    scopus 로고
    • Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays
    • Hartlen K D, Athanasopoulos A P and Kitaev V 2008 Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays Langmuir 24 1714
    • (2008) Langmuir , vol.24 , pp. 1714
    • Hartlen, K.D.1    Athanasopoulos, A.P.2    Kitaev, V.3
  • 33
    • 77956274546 scopus 로고    scopus 로고
    • Toxicity and cellular uptake of gold nanoparticles: What we have learned so far?
    • Alkilany A M and Murphy C J 2010 Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res. 12 2313
    • (2010) J. Nanopart. Res. , vol.12 , pp. 2313
    • Alkilany, A.M.1    Murphy, C.J.2
  • 34
    • 9144251796 scopus 로고    scopus 로고
    • Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling
    • Jolivet J-P et al 2004 Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling J. Mater. Chem. 14 3281
    • (2004) J. Mater. Chem. , vol.14 , pp. 3281
    • Jolivet, J.-P.1
  • 35
    • 70350700939 scopus 로고    scopus 로고
    • Uncertainty estimation of nanoparticle size distribution from a finite number of data obtained by microscopic analysis
    • Song N W, Park K M, Lee I-H and Huh H 2009 Uncertainty estimation of nanoparticle size distribution from a finite number of data obtained by microscopic analysis Metrologia 46 480
    • (2009) Metrologia , vol.46 , Issue.5 , pp. 480
    • Song, N.W.1    Park, K.M.2    Lee, I.-H.3    Huh, H.4
  • 36
    • 34347326271 scopus 로고    scopus 로고
    • Transcriptional control of brown fat determination by PRDM16
    • Seale P et al 2007 Transcriptional control of brown fat determination by PRDM16 Cell Metab. 6 38
    • (2007) Cell Metab. , vol.6 , pp. 38
    • Seale, P.1
  • 37
    • 84927631634 scopus 로고    scopus 로고
    • Intracellular annexin A2 regulates NF-κB signaling by binding to the p50 subunit: Implications for gemcitabine resistance in pancreatic cancer
    • Jung H et al 2015 Intracellular annexin A2 regulates NF-κB signaling by binding to the p50 subunit: implications for gemcitabine resistance in pancreatic cancer Cell Death Dis. 6 e1606
    • (2015) Cell Death Dis. , vol.6
    • Jung, H.1
  • 38
    • 84886479306 scopus 로고    scopus 로고
    • Investigation of adipocyte proteome during the differentiation of brown preadipocytes
    • Kamal A H M et al 2013 Investigation of adipocyte proteome during the differentiation of brown preadipocytes J. Proteomics 94 327
    • (2013) J. Proteomics , vol.94 , pp. 327
    • Kamal, A.H.M.1
  • 39
    • 84855578789 scopus 로고    scopus 로고
    • Myostatin inhibits brown adipocyte differentiation via regulation of Smad3-mediated β-catenin stabilization
    • Kim W K et al 2012 Myostatin inhibits brown adipocyte differentiation via regulation of Smad3-mediated β-catenin stabilization Int. J. Biochem. Cell Biol. 44 327
    • (2012) Int. J. Biochem. Cell Biol. , vol.44 , pp. 327
    • Kim, W.K.1
  • 40
    • 84882593558 scopus 로고    scopus 로고
    • Dual-specificity phosphatase 10 controls brown adipocyte differentiation by modulating the phosphorylation of p38 mitogen-activated protein kinase
    • Choi H R et al 2013 Dual-specificity phosphatase 10 controls brown adipocyte differentiation by modulating the phosphorylation of p38 mitogen-activated protein kinase PLoS One 8 e72340
    • (2013) PLoS One , vol.8
    • Choi, H.R.1
  • 41
    • 84055176116 scopus 로고    scopus 로고
    • RPTPω tyrosine phosphatase promotes adipogenic differentiation via modulation of p120 catenin phosphorylation
    • Kim W K et al 2011 RPTPω tyrosine phosphatase promotes adipogenic differentiation via modulation of p120 catenin phosphorylation Mol. Biol. Cell 22 4883
    • (2011) Mol. Biol. Cell , vol.22 , pp. 4883
    • Kim, W.K.1
  • 42
    • 84880504676 scopus 로고    scopus 로고
    • Retinoic acid inhibits adipogenesis via activation of Wnt signaling pathway in 3T3-L1 preadipocytes
    • Kim D M et al 2013 Retinoic acid inhibits adipogenesis via activation of Wnt signaling pathway in 3T3-L1 preadipocytes Biochem. Biophys. Res. Commun. 434 455
    • (2013) Biochem. Biophys. Res. Commun. , vol.434 , pp. 455
    • Kim, D.M.1
  • 43
    • 84867814859 scopus 로고    scopus 로고
    • Mechanism of cellular uptake of genotoxic silica nanoparticles
    • Mu Q et al 2012 Mechanism of cellular uptake of genotoxic silica nanoparticles Part. Fibre Toxicol. 9 29
    • (2012) Part. Fibre Toxicol. , vol.9 , pp. 29
    • Mu, Q.1
  • 44
    • 82655181893 scopus 로고    scopus 로고
    • Cytotoxicity and mitochondrial damage caused by silica nanoparticles
    • Sun L et al 2011 Cytotoxicity and mitochondrial damage caused by silica nanoparticles Toxicol. In Vitro 5 1619
    • (2011) Toxicol. in Vitro , vol.5 , pp. 1619
    • Sun, L.1
  • 45
    • 84928214080 scopus 로고    scopus 로고
    • Cobalt oxide nanoparticles induced oxidative stress linked to activation of TNF-α/caspase-8/p38-MAPK signaling in human leukemia cells
    • Chattopadhyay S, Dash S K, Tripathy S, Das B, Kar Mahapatra S, Pramanik P and Roy S 2015 Cobalt oxide nanoparticles induced oxidative stress linked to activation of TNF-α/caspase-8/p38-MAPK signaling in human leukemia cells J. Appl. Toxicol. 35 603
    • (2015) J. Appl. Toxicol. , vol.35 , pp. 603
    • Chattopadhyay, S.1    Dash, S.K.2    Tripathy, S.3    Das, B.4    Kar Mahapatra, S.5    Pramanik, P.6    Roy, S.7
  • 46
    • 84902278798 scopus 로고    scopus 로고
    • Silica nanoparticles induce cytokine responses in lung epithelial cells through activation of a p38/TACE/TGF-α/EGFR-pathway and NF-κB signaling
    • Skuland T, Ovrevik J, Lag M, Schwarze P and Refsnes M 2014 Silica nanoparticles induce cytokine responses in lung epithelial cells through activation of a p38/TACE/TGF-α/EGFR-pathway and NF-κB signaling Toxicol. Appl. Pharmacol. 279 76
    • (2014) Toxicol. Appl. Pharmacol. , vol.279 , pp. 76
    • Skuland, T.1    Ovrevik, J.2    Lag, M.3    Schwarze, P.4    Refsnes, M.5
  • 47
    • 84893734006 scopus 로고    scopus 로고
    • Aluminum nanoparticles induce ERK and p38MAPK activation in rat brain
    • Kwon J T et al 2013 Aluminum nanoparticles induce ERK and p38MAPK activation in rat brain Toxicol. Res. 29 181
    • (2013) Toxicol. Res. , vol.29 , pp. 181
    • Kwon, J.T.1
  • 48
    • 84873334239 scopus 로고    scopus 로고
    • Reactive oxygen species-mediated p38 MAPK regulates carbon nanotube-induced fibrogenic and angiogenic responses
    • Azad N, Iyer A K, Wang L, Liu Y, Lu Y and Rojanasakul Y 2013 Reactive oxygen species-mediated p38 MAPK regulates carbon nanotube-induced fibrogenic and angiogenic responses Nanotoxicology 7 157
    • (2013) Nanotoxicology , vol.7 , pp. 157
    • Azad, N.1    Iyer, A.K.2    Wang, L.3    Liu, Y.4    Lu, Y.5    Rojanasakul, Y.6
  • 49
    • 82655173857 scopus 로고    scopus 로고
    • ZnO nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways
    • Meyer K, Rajanahali P, Ahamed M, Rowe J J and Hong Y 2011 ZnO nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways Toxicol. In Vitro 25 1721
    • (2011) Toxicol. in Vitro , vol.25 , pp. 1721
    • Meyer, K.1    Rajanahali, P.2    Ahamed, M.3    Rowe, J.J.4    Hong, Y.5
  • 50
    • 78549241716 scopus 로고    scopus 로고
    • P38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat cells
    • Eom H J and Choi J 2010 p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat cells Environ. Sci. Technol. 44 8337
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 8337
    • Eom, H.J.1    Choi, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.