메뉴 건너뛰기




Volumn 2, Issue , 2015, Pages 464-469

Non-distributional word vector representations

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; SEMANTICS; VECTORS; COMPUTATION THEORY; LINGUISTICS;

EID: 84944054947     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/p15-2076     Document Type: Conference Paper
Times cited : (48)

References (41)
  • 1
    • 84858390207 scopus 로고    scopus 로고
    • A study on similarity and relatedness using distributional and wordnet-based approaches
    • Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Paşa, and Aitor Soroa. 2009. A study on similarity and relatedness using distributional and wordnet-based approaches. In Proc. of NAACL.
    • (2009) Proc. of NAACL
    • Agirre, E.1    Alfonseca, E.2    Hall, K.3    Kravalova, J.4    Paşa, M.5    Soroa, A.6
  • 2
    • 67651176167 scopus 로고    scopus 로고
    • Integrating experiential and distributional data to learn semantic representations
    • Mark Andrews, Gabriella Vigliocco, and David Vinson. 2009. Integrating experiential and distributional data to learn semantic representations. Psychological review, 116(3):463.
    • (2009) Psychological Review , vol.116 , Issue.3 , pp. 463
    • Andrews, M.1    Vigliocco, G.2    Vinson, D.3
  • 4
    • 84906933205 scopus 로고    scopus 로고
    • Tailoring continuous word representations for dependency parsing
    • Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2014. Tailoring continuous word representations for dependency parsing. In Proc. of ACL.
    • (2014) Proc. of ACL
    • Bansal, M.1    Gimpel, K.2    Livescu, K.3
  • 5
    • 84946051334 scopus 로고    scopus 로고
    • Knowledge-powered deep learning for word embedding
    • Jiang Bian, Bin Gao, and Tie-Yan Liu. 2014. Knowledge-powered deep learning for word embedding. In Proc. of MLKDD.
    • (2014) Proc. of MLKDD
    • Bian, J.1    Gao, B.2    Liu, T.3
  • 6
    • 80053364056 scopus 로고    scopus 로고
    • Broad-coverage sense disambiguation and information extraction with a supersense sequence tagger
    • Massimiliano Ciaramita and Yasemin Altun. 2006. Broad-coverage sense disambiguation and information extraction with a supersense sequence tagger. In Proc. of EMNLP.
    • (2006) Proc. of EMNLP
    • Ciaramita, M.1    Altun, Y.2
  • 7
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms
    • Michael Collins. 2002. Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In Proc. of EMNLP.
    • (2002) Proc. of EMNLP
    • Collins, M.1
  • 8
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Thomas G. Dietterich. 1998. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation.
    • (1998) Neural Computation
    • Dietterich, T.G.1
  • 11
    • 84906931241 scopus 로고    scopus 로고
    • Connotation lexicon: A dash of sentiment beneath the surface meaning
    • Song Feng, Jun Seok Kang, Polina Kuznetsova, and Yejin Choi. 2013. Connotation lexicon: A dash of sentiment beneath the surface meaning. In Proc. of ACL.
    • (2013) Proc. of ACL
    • Feng, S.1    Seok Kang, J.2    Kuznetsova, P.3    Choi, Y.4
  • 15
    • 84906929663 scopus 로고    scopus 로고
    • Interpretable semantic vectors from a joint model of brain-and text-based meaning
    • Alona Fyshe, Partha P. Talukdar, Brian Murphy, and Tom M. Mitchell. 2014. Interpretable semantic vectors from a joint model of brain-and text-based meaning. In Proc. of ACL.
    • (2014) Proc. of ACL
    • Fyshe, A.1    Talukdar, P.P.2    Murphy, B.3    Mitchell, T.M.4
  • 17
    • 84961363245 scopus 로고    scopus 로고
    • Revisiting embedding features for simple semi-supervised learning
    • Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting Liu. 2014. Revisiting embedding features for simple semi-supervised learning. In Proc. of EMNLP.
    • (2014) Proc. of EMNLP
    • Guo, J.1    Che, W.2    Wang, H.3    Liu, T.4
  • 19
    • 84926364159 scopus 로고    scopus 로고
    • Fish transporters and miracle homes: How compositional distributional semantics can help NP parsing
    • Angeliki Lazaridou, Eva Maria Vecchi, and Marco Baroni. 2013. Fish transporters and miracle homes: How compositional distributional semantics can help NP parsing. In Proc. of EMNLP.
    • (2013) Proc. of EMNLP
    • Lazaridou, A.1    Maria Vecchi, E.2    Baroni, M.3
  • 21
    • 34249852033 scopus 로고
    • Building a large annotated corpus of english: The penn treebank
    • Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large annotated corpus of english: The penn treebank. Computational linguistics, 19(2):313-330.
    • (1993) Computational Linguistics , vol.19 , Issue.2 , pp. 313-330
    • Marcus, M.P.1    Ann Marcinkiewicz, M.2    Santorini, B.3
  • 22
    • 84876798255 scopus 로고    scopus 로고
    • Online learning of approximate dependency parsing algorithms
    • Ryan T McDonald and Fernando CN Pereira. 2006. Online learning of approximate dependency parsing algorithms. In Proc. of EACL.
    • (2006) Proc. of EACL
    • McDonald, R.T.1    Pereira, F.C.N.2
  • 25
    • 84881408290 scopus 로고    scopus 로고
    • Crowdsourcing a word-emotion association lexicon
    • Saif M. Mohammad and Peter D. Turney. 2013. Crowdsourcing a word-emotion association lexicon. Computational Intelligence, 29(3):436-465.
    • (2013) Computational Intelligence , vol.29 , Issue.3 , pp. 436-465
    • Mohammad, S.M.1    Turney, P.D.2
  • 27
    • 84876796142 scopus 로고    scopus 로고
    • Learning effective and interpretable semantic models using non-negative sparse embedding
    • Brian Murphy, Partha Talukdar, and Tom Mitchell. 2012. Learning effective and interpretable semantic models using non-negative sparse embedding. In Proc. of COLING.
    • (2012) Proc. of COLING
    • Murphy, B.1    Talukdar, P.2    Mitchell, T.3
  • 28
    • 85120163947 scopus 로고    scopus 로고
    • Unsupervised all-words word sense disambiguation with grammatical dependencies
    • Vivi Nastase. 2008. Unsupervised all-words word sense disambiguation with grammatical dependencies. In Proc. of IJCNLP.
    • (2008) Proc. of IJCNLP
    • Nastase, V.1
  • 29
    • 57349126314 scopus 로고    scopus 로고
    • Algorithms for deterministic incremental dependency parsing
    • Joakim Nivre. 2008. Algorithms for deterministic incremental dependency parsing. Computational Linguistics, 34(4):513-553.
    • (2008) Computational Linguistics , vol.34 , Issue.4 , pp. 513-553
    • Nivre, J.1
  • 30
    • 84944099059 scopus 로고
    • Synonyms and antonyms: An alphabetical list of words in common use, grouped with others of similar and opposite meaning
    • Edith Bertha Ordway. 1913. Synonyms and Antonyms: An Alphabetical List of Words in Common Use, Grouped with Others of Similar and Opposite Meaning. Sully and Kleinteich.
    • (1913) Sully and Kleinteich
    • Bertha Ordway, E.1
  • 32
    • 85124016637 scopus 로고    scopus 로고
    • A maximum entropy model for part-of-speech tagging
    • Adwait Ratnaparkhi. 1996. A maximum entropy model for part-of-speech tagging. In Proc. of EMNLP.
    • (1996) Proc. of EMNLP
    • Ratnaparkhi, A.1
  • 33
    • 0003033112 scopus 로고
    • Using information content to evaluate semantic similarity in a taxonomy
    • Philip Resnik. 1995. Using information content to evaluate semantic similarity in a taxonomy. In Proc. of IJCAI.
    • (1995) Proc. of IJCAI
    • Resnik, P.1
  • 34
    • 84944099060 scopus 로고
    • Roget's thesaurus of english words and phrases
    • Available from Project Gutemberg. Herbert Rubenstein and John B. Goodenough 1965. Contextual correlates of synonymy
    • P. M. Roget. 1852. Roget's Thesaurus of English words and phrases. Available from Project Gutemberg. Herbert Rubenstein and John B. Goodenough. 1965. Contextual correlates of synonymy. Commun. ACM, 8(10).
    • (1852) Commun. ACM , vol.8 , Issue.10
    • Roget, P.M.1
  • 38
    • 77952700189 scopus 로고    scopus 로고
    • From frequency to meaning : Vector space models of semantics
    • Peter D. Turney and Patrick Pantel. 2010. From frequency to meaning : Vector space models of semantics. JAIR, pages 141-188.
    • (2010) JAIR , pp. 141-188
    • Turney, P.D.1    Pantel, P.2
  • 39
    • 0345551404 scopus 로고    scopus 로고
    • Mining the web for synonyms: Pmi-ir versus lsa on toefl
    • Peter D. Turney. 2001. Mining the web for synonyms: Pmi-ir versus lsa on toefl. In Proc. of ECML.
    • (2001) Proc. of ECML
    • Turney, P.D.1
  • 40
    • 84937567033 scopus 로고    scopus 로고
    • Rcnet: A general framework for incorporating knowledge into word representations
    • Chang Xu, Yalong Bai, Jiang Bian, Bin Gao, Gang Wang, Xiaoguang Liu, and Tie-Yan Liu. 2014. Rcnet: A general framework for incorporating knowledge into word representations. In Proc. of CIKM.
    • (2014) Proc. of CIKM
    • Xu, C.1    Bai, Y.2    Bian, J.3    Gao, B.4    Wang, G.5    Liu, X.6    Liu, T.7
  • 41
    • 84906927790 scopus 로고    scopus 로고
    • Improving lexical embeddings with semantic knowledge
    • Mo Yu and Mark Dredze. 2014. Improving lexical embeddings with semantic knowledge. In Proc. of ACL.
    • (2014) Proc. of ACL
    • Yu, M.1    Dredze, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.