메뉴 건너뛰기




Volumn 79, Issue 2, 2015, Pages 1079-1089

Evaluation of liquefaction potential based on CPT data using random forest

Author keywords

Artificial intelligence; Cone penetration test; Liquefaction; Random forest (RF)

Indexed keywords

ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; CIVIL ENGINEERING; CONE PENETRATION TEST; LIQUEFACTION; PREDICTION; SEISMIC RESPONSE; SOIL MECHANICS; SUPPORT VECTOR MACHINE;

EID: 84943796288     PISSN: 0921030X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11069-015-1893-5     Document Type: Article
Times cited : (95)

References (30)
  • 1
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140. doi:10.1007/BF00058655
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 45:5–32. doi:10.1023/A:1010933404324
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 3
    • 84906569541 scopus 로고    scopus 로고
    • Indoor localization in a hospital environment using random forest classifiers
    • Calderoni L, Ferrara M, Franco A, Maio D (2015) Indoor localization in a hospital environment using random forest classifiers. Expert Syst Appl 42:125–134
    • (2015) Expert Syst Appl , vol.42 , pp. 125-134
    • Calderoni, L.1    Ferrara, M.2    Franco, A.3    Maio, D.4
  • 4
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich TG (2000) An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn 40:139–157. doi:10.1023/A:1007607513941
    • (2000) Mach Learn , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 5
    • 84896367715 scopus 로고    scopus 로고
    • Roke DA: Decision tree approach for soil liquefaction assessment. Sci World J
    • Gandomi AH, Fridline MM, Roke DA (2013) Decision tree approach for soil liquefaction assessment. Sci World J. doi:10.1155/2013/346285
    • (2013) Fridline MM
    • Gandomi, A.H.1
  • 6
    • 0030403486 scopus 로고    scopus 로고
    • Neural-network modeling of CPT seismic liquefaction data
    • Goh AT (1996) Neural-network modeling of CPT seismic liquefaction data. J Geotech Eng 122:70–73. doi:10.1061/(ASCE)0733-9410(1996)122:1(70)
    • (1996) J Geotech Eng , vol.122 , pp. 70-73
    • Goh, A.T.1
  • 7
    • 34848870321 scopus 로고    scopus 로고
    • Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data
    • Goh AT, Goh S (2007) Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data. Comput Geotech 34:410–421. doi:10.1016/j.compgeo.2007.06.001
    • (2007) Comput Geotech , vol.34 , pp. 410-421
    • Goh, A.T.1    Goh, S.2
  • 8
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Ham J, Chen Y, Crawford MM, Ghosh J (2005) Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 43:492–501. doi:10.1109/TGRS.2004.842481
    • (2005) IEEE Trans Geosci Remote Sens , vol.43 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 9
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20:832–844. doi:10.1109/34.709601
    • (1998) IEEE Trans Pattern Anal Mach Intell , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 10
    • 84862148993 scopus 로고    scopus 로고
    • Modelling stress–strain and volume change behaviour of unsaturated soils using an evolutionary based data mining technique, an incremental approach
    • Javadi AA, Ahangar-Asr A, Johari A, Faramarzi A, Toll D (2012) Modelling stress–strain and volume change behaviour of unsaturated soils using an evolutionary based data mining technique, an incremental approach. Eng Appl Artif Intell 25:926–933
    • (2012) Eng Appl Artif Intell , vol.25 , pp. 926-933
    • Javadi, A.A.1    Ahangar-Asr, A.2    Johari, A.3    Faramarzi, A.4    Toll, D.5
  • 12
    • 0037239210 scopus 로고    scopus 로고
    • Simplified cone penetration test-based method for evaluating liquefaction resistance of soils
    • Juang CH, Yuan H, Lee D-H, Lin P-S (2003) Simplified cone penetration test-based method for evaluating liquefaction resistance of soils. J Geotech Geoenviron Eng 129:66–80. doi:10.1061/(ASCE)1090-0241(2003)129:1(66)
    • (2003) J Geotech Geoenviron Eng , vol.129 , pp. 66-80
    • Juang, C.H.1    Yuan, H.2    Lee, D.-H.3    Lin, P.-S.4
  • 13
    • 84954349767 scopus 로고    scopus 로고
    • Modeling the mechanical behavior of carbonate sands using artificial neural networks and support vector machines
    • Kohestani VR, Hassanlourad M (2015) Modeling the mechanical behavior of carbonate sands using artificial neural networks and support vector machines. Int J Geomech. doi:10.1061/(ASCE)GM.1943-5622.0000509
    • (2015) Int J Geomech
    • Kohestani, V.R.1    Hassanlourad, M.2
  • 14
    • 84937752957 scopus 로고
    • Regression models for evaluating liquefaction probability
    • Liao SS, Veneziano D, Whitman RV (1988) Regression models for evaluating liquefaction probability. J Geotech Eng 114:389–411. doi:10.1061/(ASCE)0733-9410(1988)114:4(389)
    • (1988) J Geotech Eng , vol.114 , pp. 389-411
    • Liao, S.S.1    Veneziano, D.2    Whitman, R.V.3
  • 15
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw A, Wiener M (2002) Classification and regression by random forest. R News 2:18–22
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 17
    • 79959703102 scopus 로고    scopus 로고
    • Estimating residual variance in random forest regression
    • Mendez G, Lohr S (2011) Estimating residual variance in random forest regression. Comput Stat Data Anal 55:2937–2950
    • (2011) Comput Stat Data Anal , vol.55 , pp. 2937-2950
    • Mendez, G.1    Lohr, S.2
  • 18
    • 78349272696 scopus 로고    scopus 로고
    • Validation and application of empirical liquefaction models
    • Oommen T, Baise LG, Vogel R (2010) Validation and application of empirical liquefaction models. J Geotech Geoenviron Eng 136:1618–1633
    • (2010) J Geotech Geoenviron Eng , vol.136 , pp. 1618-1633
    • Oommen, T.1    Baise, L.G.2    Vogel, R.3
  • 19
    • 33746870002 scopus 로고    scopus 로고
    • Support vector machines-based modelling of seismic liquefaction potential
    • Pal M (2006) Support vector machines-based modelling of seismic liquefaction potential. Int J Numer Anal Meth Geomech 30:983–996. doi:10.1002/nag.509
    • (2006) Int J Numer Anal Meth Geomech , vol.30 , pp. 983-996
    • Pal, M.1
  • 20
    • 39349112156 scopus 로고    scopus 로고
    • Seismic liquefaction potential assessment by using relevance vector machine
    • Samui P (2007) Seismic liquefaction potential assessment by using relevance vector machine. Earthq Eng Eng Vib 6:331–336. doi:10.1007/s11803-007-0766-7
    • (2007) Earthq Eng Eng Vib , vol.6 , pp. 331-336
    • Samui, P.1
  • 21
    • 84921423491 scopus 로고    scopus 로고
    • The use of a relevance vector machine in predicting liquefaction potential
    • Samui P, Karthikeyan J (2014) The use of a relevance vector machine in predicting liquefaction potential. Indian Geotech J 44:458–467. doi:10.1007/s40098-013-0094-y
    • (2014) Indian Geotech J , vol.44 , pp. 458-467
    • Samui, P.1    Karthikeyan, J.2
  • 22
    • 78650915977 scopus 로고    scopus 로고
    • Machine learning modelling for predicting soil liquefaction susceptibility
    • Samui P, Sitharam T (2011) Machine learning modelling for predicting soil liquefaction susceptibility. Nat Hazards Earth Syst Sci 11:1–9. doi:10.5194/nhess-11-1-2011
    • (2011) Nat Hazards Earth Syst Sci , vol.11 , pp. 1-9
    • Samui, P.1    Sitharam, T.2
  • 23
    • 0015128601 scopus 로고
    • Simplified procedure for evaluating soil liquefaction potential
    • Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Div 97:1249–1273
    • (1971) J Soil Mech Found Div , vol.97 , pp. 1249-1273
    • Seed, H.B.1    Idriss, I.M.2
  • 24
    • 77958064179 scopus 로고    scopus 로고
    • Mining data with random forests: a survey and results of new tests
    • Verikas A, Gelzinis A, Bacauskiene M (2011) Mining data with random forests: a survey and results of new tests. Pattern Recogn 44:330–349. doi:10.1016/j.patcog.2010.08.011
    • (2011) Pattern Recogn , vol.44 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 25
    • 79953029215 scopus 로고    scopus 로고
    • Application of a random forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy
    • Vincenzi S, Zucchetta M, Franzoi P, Pellizzato M, Pranovi F, De Leo GA, Torricelli P (2011) Application of a random forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy. Ecol Model 222:1471–1478. doi:10.1016/j.ecolmodel.2011.02.007
    • (2011) Ecol Model , vol.222 , pp. 1471-1478
    • Vincenzi, S.1    Zucchetta, M.2    Franzoi, P.3    Pellizzato, M.4    Pranovi, F.5    De Leo, G.A.6    Torricelli, P.7
  • 26
    • 84949116428 scopus 로고    scopus 로고
    • A random forest algorithm applied to condition-based wastewater deterioration modeling and forecasting
    • Vitorino D, Coelho S, Santos P, Sheets S, Jurkovac B, Amado C (2014) A random forest algorithm applied to condition-based wastewater deterioration modeling and forecasting. Procedia Eng 89:401–410
    • (2014) Procedia Eng , vol.89 , pp. 401-410
    • Vitorino, D.1    Coelho, S.2    Santos, P.3    Sheets, S.4    Jurkovac, B.5    Amado, C.6
  • 27
    • 67651115922 scopus 로고    scopus 로고
    • Monitoring of cropland practices for carbon sequestration purposes in north central Montana by Landsat remote sensing
    • Watts JD, Lawrence RL, Miller PR, Montagne C (2009) Monitoring of cropland practices for carbon sequestration purposes in north central Montana by Landsat remote sensing. Remote Sens Environ 113:1843–1852. doi:10.1016/j.rse.2009.04.015
    • (2009) Remote Sens Environ , vol.113 , pp. 1843-1852
    • Watts, J.D.1    Lawrence, R.L.2    Miller, P.R.3    Montagne, C.4
  • 29
    • 84877018780 scopus 로고    scopus 로고
    • Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction
    • Xue X, Yang X (2013) Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction. Nat Hazards 67:901–917
    • (2013) Nat Hazards , vol.67 , pp. 901-917
    • Xue, X.1    Yang, X.2
  • 30
    • 0035474671 scopus 로고    scopus 로고
    • Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils
    • Youd T et al (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenviron Eng 127:817–833. doi:10.1061/(ASCE)1090-0241(2001)127:10(817)
    • (2001) J Geotech Geoenviron Eng , vol.127 , pp. 817-833
    • Youd, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.