메뉴 건너뛰기




Volumn 16, Issue 1, 2016, Pages

Modeling the mechanical behavior of carbonate sands using artificial neural networks and support vector machines

Author keywords

Artificial neural network (ANN); Carbonate sand; Mechanical behavior; Support vector machine (SVM)

Indexed keywords

CARBONATION; FORECASTING; NEURAL NETWORKS; SOILS; SUPPORT VECTOR MACHINES;

EID: 84954349767     PISSN: 15323641     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)GM.1943-5622.0000509     Document Type: Article
Times cited : (54)

References (42)
  • 1
    • 0026883604 scopus 로고
    • Static and cyclic direct shear tests on carbonate sands
    • Al-Douri, R. H., and Poulos, H. G. (1992). "Static and cyclic direct shear tests on carbonate sands." Geotech. Test. J., 15(2), 138-157.
    • (1992) Geotech. Test. J. , vol.15 , Issue.2 , pp. 138-157
    • Al-Douri, R.H.1    Poulos, H.G.2
  • 2
    • 85057502485 scopus 로고
    • Techniques and results of offshore pile load testing in calcareous soils
    • Offshore Technology Conference, Houston
    • Angemeer, J., Carlson, E. G., and Klick, J. H. (1973). "Techniques and results of offshore pile load testing in calcareous soils." Proc., Offshore Technology Conf., Offshore Technology Conference, Houston, 677-699.
    • (1973) Proc. Offshore Technology Conf. , pp. 677-699
    • Angemeer, J.1    Carlson, E.G.2    Klick, J.H.3
  • 3
    • 84929223253 scopus 로고    scopus 로고
    • Artificial neural networks for modeling drained monotonic behavior of rockfill materials
    • Araei, A. A. (2014). "Artificial neural networks for modeling drained monotonic behavior of rockfill materials." Int. J. Geomech., 14(3).
    • (2014) Int. J. Geomech. , vol.14 , Issue.3
    • Araei, A.A.1
  • 4
    • 23644459214 scopus 로고    scopus 로고
    • Artificial neural network for stress-strain behavior of sandy soils: Knowledge based verification
    • Banimahd, M., Yasrobi, S., and Woodward, P. (2005). "Artificial neural network for stress-strain behavior of sandy soils: Knowledge based verification." Comput. Geotech., 32(5), 377-386.
    • (2005) Comput. Geotech. , vol.32 , Issue.5 , pp. 377-386
    • Banimahd, M.1    Yasrobi, S.2    Woodward, P.3
  • 5
    • 0020269299 scopus 로고
    • Cone penetration and laboratory testing in marine calcareous sediments
    • ASTM, West Conshohocken, PA
    • Beringen, F. L., Kolk, H. J., and Windle, D. (1982). "Cone penetration and laboratory testing in marine calcareous sediments." ASTM STP 777, ASTM, West Conshohocken, PA, 179-209.
    • (1982) ASTM STP 777 , pp. 179-209
    • Beringen, F.L.1    Kolk, H.J.2    Windle, D.3
  • 6
    • 78650515562 scopus 로고    scopus 로고
    • Simple shear behavior of calcareous and quartz sands
    • Brandes, H. (2011). "Simple shear behavior of calcareous and quartz sands." Geotech. Geolog. Eng., 29(1), 113-126.
    • (2011) Geotech. Geolog. Eng. , vol.29 , Issue.1 , pp. 113-126
    • Brandes, H.1
  • 7
    • 79959604878 scopus 로고    scopus 로고
    • Static and dynamic properties of a calcareous sand from southwest Puerto Rico
    • ASCE, Reston, VA
    • Catano, J., and Pando, M. A. (2010). "Static and dynamic properties of a calcareous sand from southwest Puerto Rico." Proc., GeoFlorida 2010-Advances in Analysis, Modeling&Design, ASCE, Reston, VA, 842-851.
    • (2010) Proc., GeoFlorida 2010-Advances in Analysis, Modeling&Design , pp. 842-851
    • Catano, J.1    Pando, M.A.2
  • 8
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., and Vapnik, V. (1995). "Support-vector networks." Mach. Learn., 20(3), 273-297.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 77954877923 scopus 로고    scopus 로고
    • Data mining with neural networks and support vector machines using the R/rminer tool
    • P. Perner, ed., Springer, Berlin Heidelberg
    • Cortez, P. (2010). "Data mining with neural networks and support vector machines using the R/rminer tool." Advances in data mining. Applications and theoretical aspects, P. Perner, ed., Springer, Berlin Heidelberg, 572-583.
    • (2010) Advances in data mining. Applications and theoretical aspects , pp. 572-583
    • Cortez, P.1
  • 12
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: Introduction and applications
    • Dibike, Y. B., Velickov, S., Solomatine, D., and Abbott, M. B. (2001). "Model induction with support vector machines: Introduction and applications." J. Comput. Civil Eng., 10.1061/(ASCE)0887-3801(2001)15:3(208), 208-216.
    • (2001) J. Comput. Civil Eng. , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 13
    • 0029309340 scopus 로고
    • Stress-strain modeling of sands using artificial neural networks
    • Ellis, G., Yao, C., Zhao, R., and Penumadu, D. (1995). "Stress-strain modeling of sands using artificial neural networks." J. Geotech. Eng., 10.1061/(ASCE)0733-9410(1995)121:5(429), 429-435.
    • (1995) J. Geotech. Eng. , pp. 429-435
    • Ellis, G.1    Yao, C.2    Zhao, R.3    Penumadu, D.4
  • 15
    • 34848870321 scopus 로고    scopus 로고
    • Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data
    • Goh, A. T., and Goh, S. (2007). "Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data." Comput. Geotech., 34(5), 410-421.
    • (2007) Comput. Geotech. , vol.34 , Issue.5 , pp. 410-421
    • Goh, A.T.1    Goh, S.2
  • 16
    • 85027953998 scopus 로고    scopus 로고
    • Using the design of experiment to model the effect of silica sand and cement on crushing properties of carbonate sand
    • Grine, K., Attar, A., Aoubed, A., and Breysse, D. (2011). "Using the design of experiment to model the effect of silica sand and cement on crushing properties of carbonate sand." Mater. Struct., 44(1), 195-203.
    • (2011) Mater. Struct. , vol.44 , Issue.1 , pp. 195-203
    • Grine, K.1    Attar, A.2    Aoubed, A.3    Breysse, D.4
  • 17
    • 34347396358 scopus 로고    scopus 로고
    • Creation of an artificial carbonate sand
    • Grine, K., and Glendinning, S. (2007). "Creation of an artificial carbonate sand." Geotech. Geolog. Eng., 25(4), 441-448.
    • (2007) Geotech. Geolog. Eng. , vol.25 , Issue.4 , pp. 441-448
    • Grine, K.1    Glendinning, S.2
  • 18
    • 0042324284 scopus 로고    scopus 로고
    • A neural network framework for mechanical behavior of unsaturated soils
    • Habibagahi, G., and Bamdad, A. (2003). "A neural network framework for mechanical behavior of unsaturated soils." Can. Geotech. J., 40(3), 684-693.
    • (2003) Can. Geotech. J. , vol.40 , Issue.3 , pp. 684-693
    • Habibagahi, G.1    Bamdad, A.2
  • 21
    • 85009629937 scopus 로고    scopus 로고
    • Neural networks in ocean engineering
    • Jain, P., and Deo, M. (2006). "Neural networks in ocean engineering." Ships Offshore Struct., 1(1), 25-35.
    • (2006) Ships Offshore Struct. , vol.1 , Issue.1 , pp. 25-35
    • Jain, P.1    Deo, M.2
  • 22
    • 4243800761 scopus 로고
    • An introduction to calcareous sediments
    • Dept. of Civil Engineering, Univ. of Western Australia, Crawley, WA, Australia
    • Jewell, R. J. (1993). "An introduction to calcareous sediments." Research Rep. No. G1075, Dept. of Civil Engineering, Univ. of Western Australia, Crawley, WA, Australia.
    • (1993) Research Rep. No. G1075
    • Jewell, R.J.1
  • 23
    • 78649632791 scopus 로고    scopus 로고
    • Modelling the mechanical behaviour of unsaturated soils using a genetic algorithm-based neural network
    • Johari, A., Javadi, A., and Habibagahi, G. (2011). "Modelling the mechanical behaviour of unsaturated soils using a genetic algorithm-based neural network." Comput. Geotech., 38(1), 2-13.
    • (2011) Comput. Geotech. , vol.38 , Issue.1 , pp. 2-13
    • Johari, A.1    Javadi, A.2    Habibagahi, G.3
  • 24
    • 84883523357 scopus 로고    scopus 로고
    • Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data
    • Kordjazi, A., Pooya Nejad, F., and Jaksa, M. B. (2014). "Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data." Comput. Geotech., 55, 91-102.
    • (2014) Comput. Geotech. , vol.55 , pp. 91-102
    • Kordjazi, A.1    Pooya Nejad, F.2    Jaksa, M.B.3
  • 25
    • 0010588384 scopus 로고    scopus 로고
    • Yielding stress characteristics of carbonate sand in relation to individual particle fragmentation strength
    • Balkema, Rotterdam, Netherlands
    • Kwag, J. M., Ochiai, H., and Yasufuku, N. (1999). "Yielding stress characteristics of carbonate sand in relation to individual particle fragmentation strength." Proc., Int. Conf. on Engineering for Calcareous Sediments, Balkema, Rotterdam, Netherlands, 79-86.
    • (1999) Proc. Int. Conf. on Engineering for Calcareous Sediments , pp. 79-86
    • Kwag, J.M.1    Ochiai, H.2    Yasufuku, N.3
  • 26
    • 85021761250 scopus 로고
    • On the investigation of a multilayer feedforward neural network model of rock deformability behaviour
    • International Society for Rock Mechanics, Tokyo
    • Millar, D. L., and Calderbank, P. A. (1995). "On the investigation of a multilayer feedforward neural network model of rock deformability behaviour." Proc., 8th ISRM Congress, International Society for Rock Mechanics, Tokyo.
    • (1995) Proc., 8th ISRM Congress
    • Millar, D.L.1    Calderbank, P.A.2
  • 27
    • 0013404979 scopus 로고    scopus 로고
    • Characterizing the 3D stress-strain behavior of sandy soils: A neuro-mechanistic approach
    • ASCE, Reston, VA
    • Najjar, Y., and Zhang, X. (2000). "Characterizing the 3D stress-strain behavior of sandy soils: A neuro-mechanistic approach." Proc., Numerical Methods in Geotechnical Engineering, ASCE, Reston, VA, 43-57.
    • (2000) Proc., Numerical Methods in Geotechnical Engineering , pp. 43-57
    • Najjar, Y.1    Zhang, X.2
  • 30
    • 0032786618 scopus 로고    scopus 로고
    • Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)
    • Penumadu, D., and Zhao, R. (1999). "Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)." Comput. Geotech., 24(3), 207-230.
    • (1999) Comput. Geotech. , vol.24 , Issue.3 , pp. 207-230
    • Penumadu, D.1    Zhao, R.2
  • 31
    • 84892835348 scopus 로고    scopus 로고
    • Application of an artificial neural network for modeling the mechanical behavior of carbonate soils
    • Rashidian, V., and Hassanlourad, M. (2013a). "Application of an artificial neural network for modeling the mechanical behavior of carbonate soils." Int. J. Geomech., 10.1061/(ASCE)GM.1943-5622.0000299, 142-150.
    • (2013) Int. J. Geomech. , pp. 142-150
    • Rashidian, V.1    Hassanlourad, M.2
  • 32
    • 84880167968 scopus 로고    scopus 로고
    • Predicting the shear behavior of cemented and uncemented carbonate sands using a genetic algorithm-based artificial neural network
    • Rashidian, V., and Hassanlourad, M. (2013b). "Predicting the shear behavior of cemented and uncemented carbonate sands using a genetic algorithm-based artificial neural network." Geotech Geolog. Eng., 31(4), 1231-1248.
    • (2013) Geotech Geolog. Eng. , vol.31 , Issue.4 , pp. 1231-1248
    • Rashidian, V.1    Hassanlourad, M.2
  • 33
    • 37249018917 scopus 로고    scopus 로고
    • Recurrent and constructive-algorithm networks for sand behavior modeling
    • Romo, M. P., García, S. R., Mendoza, M. J., and Taboada-Urtuzuástegui, V. (2001). "Recurrent and constructive-algorithm networks for sand behavior modeling." Int. J. Geomech., 10.1061/(ASCE)1532-3641(2001)1:4(371), 371-387.
    • (2001) Int. J. Geomech. , pp. 371-387
    • Romo, M.P.1    García, S.R.2    Mendoza, M.J.3    Taboada-Urtuzuástegui, V.4
  • 34
    • 42649085069 scopus 로고    scopus 로고
    • Support vector machine applied to settlement of shallow foundations on cohesionless soils
    • Samui, P. (2008). "Support vector machine applied to settlement of shallow foundations on cohesionless soils." Comput. Geotech., 35(3), 419-427.
    • (2008) Comput. Geotech. , vol.35 , Issue.3 , pp. 419-427
    • Samui, P.1
  • 35
    • 43949131109 scopus 로고    scopus 로고
    • OCR prediction using support vector machine based on piezocone data
    • Samui, P., Sitharam, T., and Kurup, P. U. (2008). "OCR prediction using support vector machine based on piezocone data." J. Geotech. Geoenviron. Eng., 10.1061/(ASCE)1090-0241(2008)134:6(894), 894-898.
    • (2008) J. Geotech. Geoenviron. Eng. , pp. 894-898
    • Samui, P.1    Sitharam, T.2    Kurup, P.U.3
  • 36
    • 0006766322 scopus 로고
    • State of the art report on engineering properties of carbonate soils
    • Balkema, Rotterdam, Netherlands
    • Semple, R. (1988). "State of the art report on engineering properties of carbonate soils." Proc., Int. Conf. on Calcareous Sediments, Balkema, Rotterdam, Netherlands, 807-836.
    • (1988) Proc. Int. Conf. on Calcareous Sediments , pp. 807-836
    • Semple, R.1
  • 37
    • 33846957663 scopus 로고    scopus 로고
    • Modeling the mechanical behavior of railway ballast using artificial neural networks
    • Shahin, M. A., and Indraratna, B. (2006). "Modeling the mechanical behavior of railway ballast using artificial neural networks." Can. Geotech J., 43(11), 1144-1152.
    • (2006) Can. Geotech J. , vol.43 , Issue.11 , pp. 1144-1152
    • Shahin, M.A.1    Indraratna, B.2
  • 38
    • 84930208606 scopus 로고    scopus 로고
    • Artificial neural network applications in geotechnical engineering
    • Shahin, M. A., Jaksa, M. B., and Maier, H. R. (2001). "Artificial neural network applications in geotechnical engineering." Aust. Geomech., 36(1), 49-62.
    • (2001) Aust. Geomech. , vol.36 , Issue.1 , pp. 49-62
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 39
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola, A. J., and Schölkopf, B. (2004). "A tutorial on support vector regression." Stats. Comput., 14(3), 199-222.
    • (2004) Stats. Comput. , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 40
    • 33644845063 scopus 로고    scopus 로고
    • Facilitating the application of support vector regression by using a universal Pearson VII function based kernel
    • Üstün, B., Melssen, W. J., and Buydens, L. M. (2006). "Facilitating the application of support vector regression by using a universal Pearson VII function based kernel." Chemom. Intell. Lab. Syst., 81(1), 29-40.
    • (2006) Chemom. Intell. Lab. Syst. , vol.81 , Issue.1 , pp. 29-40
    • Üstün, B.1    Melssen, W.J.2    Buydens, L.M.3
  • 41
    • 77950919731 scopus 로고    scopus 로고
    • Neural network modeling of resilient modulus using routine subgrade soil properties
    • Zaman, M., Solanki, P., Ebrahimi, A., and White, L. (2010). "Neural network modeling of resilient modulus using routine subgrade soil properties." Int. J. Geomech., 10.1061/(ASCE)1532-3641(2010)10:1(1), 1-12.
    • (2010) Int. J. Geomech. , pp. 1-12
    • Zaman, M.1    Solanki, P.2    Ebrahimi, A.3    White, L.4
  • 42
    • 3643140672 scopus 로고    scopus 로고
    • Modelling of shearing behaviour of a residual soil with recurrent neural network
    • Zhu, J. H., Zaman, M. M., and Anderson, S. A. (1998). "Modelling of shearing behaviour of a residual soil with recurrent neural network." Int. J. Numer. Anal. Methods Geomech., 22(8), 671-687.
    • (1998) Int. J. Numer. Anal. Methods Geomech. , vol.22 , Issue.8 , pp. 671-687
    • Zhu, J.H.1    Zaman, M.M.2    Anderson, S.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.