메뉴 건너뛰기




Volumn 55, Issue 11, 2011, Pages 2937-2950

Estimating residual variance in random forest regression

Author keywords

Bootstrap; Gender gap; Greater male variability hypothesis; Nonparametric regression; Proximity measure; Regression tree; Sex differences

Indexed keywords

BOOTSTRAP; GENDER GAP; GREATER MALE VARIABILITY HYPOTHESIS; NON-PARAMETRIC REGRESSION; PROXIMITY MEASURE; REGRESSION TREES; SEX DIFFERENCE;

EID: 79959703102     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2011.04.022     Document Type: Article
Times cited : (22)

References (40)
  • 3
    • 77956747417 scopus 로고    scopus 로고
    • On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification
    • G. Biau, and L. Devroye On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification Journal of Multivariate Analysis 101 2010 2499 2518
    • (2010) Journal of Multivariate Analysis , vol.101 , pp. 2499-2518
    • Biau, G.1    Devroye, L.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 1996 123 140 (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0004140497 scopus 로고    scopus 로고
    • Technical Report. Dept. of Statistics, Univ. of California, Berkeley
    • Breiman, L., 1996b. Out-of-bag estimation. Technical Report. Dept. of Statistics, Univ. of California, Berkeley.
    • (1996) Out-of-bag Estimation
    • Breiman, L.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman Random forests Machine Learning 45 2001 5 32 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 0000123142 scopus 로고
    • The estimation of residual variance in nonparametric regression
    • M.J. Buckley, G.K. Eagleson, and B.W. Silverman The estimation of residual variance in nonparametric regression Biometrika 75 1988 189 199
    • (1988) Biometrika , vol.75 , pp. 189-199
    • Buckley, M.J.1    Eagleson, G.K.2    Silverman, B.W.3
  • 13
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • R. Díaz-Uriarte, and S. Alvarez de Andrés Gene selection and classification of microarray data using random forest BMC Bioinformatics 7 2006
    • (2006) BMC Bioinformatics , vol.7
    • Díaz-Uriarte, R.1    Alvarez De Andrés, S.2
  • 14
    • 4944239996 scopus 로고    scopus 로고
    • The estimation of prediction error: Covariance penalties and cross-validation
    • DOI 10.1198/016214504000000692
    • B. Efron The estimation of prediction error: covariance penalties and cross-validation (with discussion) Journal of the American Statistical Association 99 2004 619 632 (Pubitemid 39332847)
    • (2004) Journal of the American Statistical Association , vol.99 , Issue.467 , pp. 619-632
    • Efron, B.1
  • 16
    • 21344478382 scopus 로고
    • Gender differences in variability in intellectual abilities: A cross-cultural perspective
    • A. Feingold Gender differences in variability in intellectual abilities: a cross-cultural perspective Sex Roles 30 1994 81 92
    • (1994) Sex Roles , vol.30 , pp. 81-92
    • Feingold, A.1
  • 19
    • 77956889318 scopus 로고
    • Asymptotically optimal difference-based estimation of variance in nonparametric regression
    • P. Hall, J.W. Kay, and D.M. Titterington Asymptotically optimal difference-based estimation of variance in nonparametric regression Biometrika 77 1990 521 528
    • (1990) Biometrika , vol.77 , pp. 521-528
    • Hall, P.1    Kay, J.W.2    Titterington, D.M.3
  • 20
    • 0000035920 scopus 로고
    • On variance estimation in nonparametric regression
    • P. Hall, and J.S. Marron On variance estimation in nonparametric regression Biometrika 77 1990 415 419
    • (1990) Biometrika , vol.77 , pp. 415-419
    • Hall, P.1    Marron, J.S.2
  • 26
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Available online at
    • Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News: The Newsletter of the R Project 2, pp. 1822. Available online at http://cran.r-project.org/doc/Rnews/.
    • (2002) R News: The Newsletter of the R Project , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 27
    • 33745653724 scopus 로고    scopus 로고
    • Random forests and adaptive nearest neighbors
    • DOI 10.1198/016214505000001230
    • Y. Lin, and Y. Jeon Random forests and adaptive nearest neighbors Journal of the American Statistical Association 101 2006 578 590 (Pubitemid 43972300)
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.474 , pp. 578-590
    • Lin, Y.1    Jeon, Y.2
  • 28
    • 67650188996 scopus 로고    scopus 로고
    • Consistencies in sex differences on the Cognitive Abilities Test across countries, grades, test forms, and cohorts
    • D.F. Lohman, and J.M. Lakin Consistencies in sex differences on the Cognitive Abilities Test across countries, grades, test forms, and cohorts British Journal of Educational Psychology 79 2009 389 407
    • (2009) British Journal of Educational Psychology , vol.79 , pp. 389-407
    • Lohman, D.F.1    Lakin, J.M.2
  • 29
    • 25444453244 scopus 로고    scopus 로고
    • Screening large-scale association study data: Exploiting interactions using random forests
    • K.L. Lunetta, L.B. Hayward, J. Segal, and P. Van Eerdewegh Screening large-scale association study data: exploiting interactions using random forests BMC Genetics 5 2004 32
    • (2004) BMC Genetics , vol.5 , pp. 32
    • Lunetta, K.L.1    Hayward, L.B.2    Segal, J.3    Van Eerdewegh, P.4
  • 30
    • 57149091129 scopus 로고    scopus 로고
    • Assessment: Global sex differences in test score variability
    • DOI 10.1126/science.1162573
    • S. Machin, and T. Pekkarinen Global sex differences in test score variability Science 322 2008 1331 1332 (Pubitemid 352775232)
    • (2008) Science , vol.322 , Issue.5906 , pp. 1331-1332
    • Machin, S.1    Pekkarinen, T.2
  • 33
    • 0000006440 scopus 로고
    • Bandwidth choice for nonparametric regression
    • J. Rice Bandwidth choice for nonparametric regression The Annals of Statistics 12 1984 1215 1230
    • (1984) The Annals of Statistics , vol.12 , pp. 1215-1230
    • Rice, J.1
  • 36
    • 33645573203 scopus 로고    scopus 로고
    • Unsupervised learning with random forest predictors
    • DOI 10.1198/106186006X94072
    • T. Shi, and S. Horvath Unsupervised learning with random forest predictors Journal of Computational and Graphical Statistics 15 2006 118 138 (Pubitemid 43514414)
    • (2006) Journal of Computational and Graphical Statistics , vol.15 , Issue.1 , pp. 118-138
    • Shi, T.1    Horvath, S.2
  • 37
    • 0038612901 scopus 로고    scopus 로고
    • Fixing the F test for equal variances
    • DOI 10.1198/0003130031441
    • L.H. Shoemaker Fixing the F test for equal variances The American Statistician 57 2003 105 114 (Pubitemid 36594032)
    • (2003) American Statistician , vol.57 , Issue.2 , pp. 105-114
    • Shoemaker, L.H.1
  • 38
    • 0036331160 scopus 로고    scopus 로고
    • Variance estimation in high-dimensional regression models
    • V. Spokoiny Variance estimation in high-dimensional regression models Journal of Multivariate Analysis 82 2002 111 133
    • (2002) Journal of Multivariate Analysis , vol.82 , pp. 111-133
    • Spokoiny, V.1
  • 39
    • 27944441798 scopus 로고    scopus 로고
    • Estimating residual variance in nonparametric regression using least squares
    • DOI 10.1093/biomet/92.4.821
    • T. Tong, and Y. Wang Estimating residual variance in nonparametric regression using least squares Biometrika 92 2005 821 830 (Pubitemid 41681236)
    • (2005) Biometrika , vol.92 , Issue.4 , pp. 821-830
    • Tong, T.1    Wang, Y.2
  • 40
    • 0032638640 scopus 로고    scopus 로고
    • An efficient method to estimate bagging's generalization error
    • D.H. Wolpert, and W.G. McCready An efficient method to estimate bagging's generalization error Machine Learning 35 1999 41 55
    • (1999) Machine Learning , vol.35 , pp. 41-55
    • Wolpert, D.H.1    McCready, W.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.