-
7
-
-
84992740503
-
Irony and sarcasm: Corpus generation and analysis using crowdsourcing
-
E Filatova. 2012. Irony and sarcasm: Corpus generation and analysis using crowdsourcing. In LREC, volume 12, pages 392-398.
-
(2012)
LREC
, vol.12
, pp. 392-398
-
-
Filatova, E.1
-
8
-
-
84859059492
-
Identifying sarcasm in twitter: A closer look
-
Citeseer
-
R Gonźalez-Ibáñez, S Muresan, and N Wacholder. 2011. Identifying sarcasm in twitter: A closer look. In ACL, volume 2, pages 581-586. Citeseer.
-
(2011)
ACL
, vol.2
, pp. 581-586
-
-
Gonźalez-Ibáñez, R.1
Muresan, S.2
Wacholder, N.3
-
11
-
-
84924528335
-
Really? Well apparently bootstrapping improves the performance of sarcasm and nastiness classifiers for online dialogue
-
S Lukin and M Walker. 2013. Really? well. apparently bootstrapping improves the performance of sarcasm and nastiness classifiers for online dialogue. NAACL, pages 30-40.
-
(2013)
NAACL
, pp. 30-40
-
-
Lukin, S.1
Walker, M.2
-
12
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M Blondel, P Prettenhofer, R Weiss, V Dubourg, J Vanderplas, A Passos, D Cournapeau, M Brucher, M Perrot, and E Duchesnay. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
13
-
-
84879639835
-
A multidimensional approach for detecting irony in twitter
-
A Reyes, P Rosso, and T Veale. 2012. A multidimensional approach for detecting irony in twitter. LREC, pages 1-30.
-
(2012)
LREC
, pp. 1-30
-
-
Reyes, A.1
Rosso, P.2
Veale, T.3
-
14
-
-
84926332728
-
Sarcasm as contrast between a positive sentiment and negative situation
-
E Riloff, A Qadir, P Surve, LD Silva, N Gilbert, and R Huang. 2013. Sarcasm as contrast between a positive sentiment and negative situation. In EMNLP, pages 704-714.
-
(2013)
EMNLP
, pp. 704-714
-
-
Riloff, E.1
Qadir, A.2
Surve, P.3
Silva, L.D.4
Gilbert, N.5
Huang, R.6
-
15
-
-
84926358845
-
Recursive deep models for semantic compositionality over a sentiment treebank
-
Citeseer
-
R Socher, A Perelygin, JY Wu, J Chuang, CD Manning, AY Ng, and C Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1631-1642. Citeseer.
-
(2013)
Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)
, pp. 1631-1642
-
-
Socher, R.1
Perelygin, A.2
Wu, J.Y.3
Chuang, J.4
Manning, C.D.5
Ng, A.Y.6
Potts, C.7
-
18
-
-
84983470508
-
Feature-rich part-of-speech tagging with a cyclic dependency network
-
Association for Computational Linguistics
-
K Toutanova, D Klein, CD Manning, and Y Singer. 2003. Feature-rich part-of-speech tagging with a cyclic dependency network. In Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1, pages 173-180. Association for Computational Linguistics.
-
(2003)
Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology
, vol.1
, pp. 173-180
-
-
Toutanova, K.1
Klein, D.2
Manning, C.D.3
Singer, Y.4
-
19
-
-
84890662077
-
ICWSMa great catchy name: Semi-supervised recognition of sarcastic sentences in online product reviews
-
O Tsur, D Davidov, and A Rappoport. 2010. ICWSMa great catchy name: Semi-supervised recognition of sarcastic sentences in online product reviews. In AAAI Conference on Weblogs and Social Media.
-
(2011)
AAAI Conference on Weblogs and Social Media
-
-
Tsur, O.1
Davidov, D.2
Rappoport, A.3
-
21
-
-
84906926804
-
Humans require context to infer ironic intent (so computers probably do, too
-
BCWallace, DK Choe, L Kertz, and E Charniak. 2014. Humans require context to infer ironic intent (so computers probably do, too). Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), pages 512-516.
-
(2014)
Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL
, pp. 512-516
-
-
Choe, B.D.1
Kertz, L.2
Charniak, E.3
-
22
-
-
84924851604
-
Computational irony: A survey and new perspectives
-
BC Wallace. 2013. Computational irony: A survey and new perspectives. Artificial Intelligence Review, pages 1-17.
-
(2013)
Artificial Intelligence Review
, pp. 1-17
-
-
Wallace, B.C.1
|