-
1
-
-
49449087287
-
Glycosyltransferases: structures, functions, and mechanisms
-
Lairson L.L., et al. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 2008, 77:521-555.
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 521-555
-
-
Lairson, L.L.1
-
2
-
-
0036019907
-
Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds
-
Spiro R.G. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 2002, 12:43R-56R.
-
(2002)
Glycobiology
, vol.12
, pp. 43R-56R
-
-
Spiro, R.G.1
-
3
-
-
84874871322
-
Bacterial protein N-glycosylation: new perspectives and applications
-
Nothaft H., Szymanski C.M. Bacterial protein N-glycosylation: new perspectives and applications. J. Biol. Chem. 2013, 288:6912-6920.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 6912-6920
-
-
Nothaft, H.1
Szymanski, C.M.2
-
4
-
-
14544282378
-
Protein glycosylation in bacterial mucosal pathogens
-
Szymanski C.M., Wren B.W. Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. Microbiol. 2005, 3:225-237.
-
(2005)
Nat. Rev. Microbiol.
, vol.3
, pp. 225-237
-
-
Szymanski, C.M.1
Wren, B.W.2
-
5
-
-
77958099601
-
Protein glycosylation in bacteria: sweeter than ever
-
Nothaft H., Szymanski C.M. Protein glycosylation in bacteria: sweeter than ever. Nat. Rev. Microbiol. 2010, 8:765-778.
-
(2010)
Nat. Rev. Microbiol.
, vol.8
, pp. 765-778
-
-
Nothaft, H.1
Szymanski, C.M.2
-
6
-
-
53249147141
-
Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea
-
Abu-Qarn M., et al. Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr. Opin. Struct. Biol. 2008, 18:544-550.
-
(2008)
Curr. Opin. Struct. Biol.
, vol.18
, pp. 544-550
-
-
Abu-Qarn, M.1
-
7
-
-
77953705427
-
Post-translational modifications in host cells during bacterial infection
-
Ribet D., Cossart P. Post-translational modifications in host cells during bacterial infection. FEBS Lett. 2010, 584:2748-2758.
-
(2010)
FEBS Lett.
, vol.584
, pp. 2748-2758
-
-
Ribet, D.1
Cossart, P.2
-
8
-
-
0031750753
-
Cloning and comparison of fliC genes and identification of glycosylation in the flagellin of Pseudomonas aeruginosa a-type strains
-
Brimer C.D., Montie T.C. Cloning and comparison of fliC genes and identification of glycosylation in the flagellin of Pseudomonas aeruginosa a-type strains. J. Bacteriol. 1998, 180:3209-3217.
-
(1998)
J. Bacteriol.
, vol.180
, pp. 3209-3217
-
-
Brimer, C.D.1
Montie, T.C.2
-
9
-
-
0028988630
-
PilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin
-
Castric P. pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. Microbiology 1995, 141:1247-1254.
-
(1995)
Microbiology
, vol.141
, pp. 1247-1254
-
-
Castric, P.1
-
10
-
-
0028840449
-
Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose
-
Stimson E., et al. Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol. Microbiol. 1995, 17:1201-1214.
-
(1995)
Mol. Microbiol.
, vol.17
, pp. 1201-1214
-
-
Stimson, E.1
-
11
-
-
0037673430
-
The Haemophilus influenzae HMW1 adhesin is glycosylated in a process that requires HMW1C and phosphoglucomutase, an enzyme involved in lipooligosaccharide biosynthesis
-
Grass S., et al. The Haemophilus influenzae HMW1 adhesin is glycosylated in a process that requires HMW1C and phosphoglucomutase, an enzyme involved in lipooligosaccharide biosynthesis. Mol. Microbiol. 2003, 48:737-751.
-
(2003)
Mol. Microbiol.
, vol.48
, pp. 737-751
-
-
Grass, S.1
-
12
-
-
0033024228
-
Evidence for a system of general protein glycosylation in Campylobacter jejuni
-
Szymanski C.M., et al. Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 1999, 32:1022-1030.
-
(1999)
Mol. Microbiol.
, vol.32
, pp. 1022-1030
-
-
Szymanski, C.M.1
-
13
-
-
0029965091
-
Definition of the full extent of glycosylation of the 45-kilodalton glycoprotein of Mycobacterium tuberculosis
-
Dobos K.M., et al. Definition of the full extent of glycosylation of the 45-kilodalton glycoprotein of Mycobacterium tuberculosis. J. Bacteriol. 1996, 178:2498-2506.
-
(1996)
J. Bacteriol.
, vol.178
, pp. 2498-2506
-
-
Dobos, K.M.1
-
14
-
-
0031959575
-
Isolation and characterization of Fap1, a fimbriae-associated adhesin of Streptococcus parasanguis FW213
-
Wu H., et al. Isolation and characterization of Fap1, a fimbriae-associated adhesin of Streptococcus parasanguis FW213. Mol. Microbiol. 1998, 28:487-500.
-
(1998)
Mol. Microbiol.
, vol.28
, pp. 487-500
-
-
Wu, H.1
-
15
-
-
0034939563
-
Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin
-
Benz I., Schmidt M.A. Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Mol. Microbiol. 2001, 40:1403-1413.
-
(2001)
Mol. Microbiol.
, vol.40
, pp. 1403-1413
-
-
Benz, I.1
Schmidt, M.A.2
-
16
-
-
0032783142
-
Identification of a glycoprotein produced by enterotoxigenic Escherichia coli
-
Lindenthal C., Elsinghorst E.A. Identification of a glycoprotein produced by enterotoxigenic Escherichia coli. Infect. Immun. 1999, 67:4084-4091.
-
(1999)
Infect. Immun.
, vol.67
, pp. 4084-4091
-
-
Lindenthal, C.1
Elsinghorst, E.A.2
-
17
-
-
79960403504
-
Flagellar glycosylation in Burkholderia pseudomallei and Burkholderia thailandensis
-
Scott A.E., et al. Flagellar glycosylation in Burkholderia pseudomallei and Burkholderia thailandensis. J. Bacteriol. 2011, 193:3577-3587.
-
(2011)
J. Bacteriol.
, vol.193
, pp. 3577-3587
-
-
Scott, A.E.1
-
18
-
-
84903843093
-
Identification of the flagellin glycosylation system in Burkholderia cenocepacia and the contribution of glycosylated flagellin to evasion of human innate immune responses
-
Hanuszkiewicz A., et al. Identification of the flagellin glycosylation system in Burkholderia cenocepacia and the contribution of glycosylated flagellin to evasion of human innate immune responses. J. Biol. Chem. 2014, 289:19231-19244.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 19231-19244
-
-
Hanuszkiewicz, A.1
-
19
-
-
80053602806
-
O-linked glycosylation of the PilA pilin protein of Francisella tularensis: identification of the endogenous protein-targeting oligosaccharyltransferase and characterization of the native oligosaccharide
-
Egge-Jacobsen W., et al. O-linked glycosylation of the PilA pilin protein of Francisella tularensis: identification of the endogenous protein-targeting oligosaccharyltransferase and characterization of the native oligosaccharide. J. Bacteriol. 2011, 193:5487-5497.
-
(2011)
J. Bacteriol.
, vol.193
, pp. 5487-5497
-
-
Egge-Jacobsen, W.1
-
20
-
-
84863798364
-
Characterization of protein glycosylation in Francisella tularensis subsp. holarctica: identification of a novel glycosylated lipoprotein required for virulence
-
Balonova L., et al. Characterization of protein glycosylation in Francisella tularensis subsp. holarctica: identification of a novel glycosylated lipoprotein required for virulence. Mol. Cell. Proteomics 2012, 11:1-12.
-
(2012)
Mol. Cell. Proteomics
, vol.11
, pp. 1-12
-
-
Balonova, L.1
-
21
-
-
84864072948
-
Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation
-
Iwashkiw J.A., et al. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog. 2012, 8:e1002758.
-
(2012)
PLoS Pathog.
, vol.8
, pp. e1002758
-
-
Iwashkiw, J.A.1
-
22
-
-
84929704176
-
Acinetobacter strains carry two functional oligosaccharyltransferases, one devoted exclusively to type IV pilin, and the other one dedicated to O-glycosylation of multiple proteins
-
Harding C.M., et al. Acinetobacter strains carry two functional oligosaccharyltransferases, one devoted exclusively to type IV pilin, and the other one dedicated to O-glycosylation of multiple proteins. Mol. Microbiol. 2015, 96:1023-1041.
-
(2015)
Mol. Microbiol.
, vol.96
, pp. 1023-1041
-
-
Harding, C.M.1
-
23
-
-
84879506906
-
Pour some sugar on it: the expanding world of bacterial protein O-linked glycosylation
-
Iwashkiw J.A., et al. Pour some sugar on it: the expanding world of bacterial protein O-linked glycosylation. Mol. Microbiol. 2013, 89:14-28.
-
(2013)
Mol. Microbiol.
, vol.89
, pp. 14-28
-
-
Iwashkiw, J.A.1
-
24
-
-
80053337001
-
Biochemistry and cell signaling taught by bacterial effectors
-
Cui J., Shao F. Biochemistry and cell signaling taught by bacterial effectors. Trends Biochem. Sci. 2011, 36:532-540.
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 532-540
-
-
Cui, J.1
Shao, F.2
-
25
-
-
34547192712
-
Nontypeable Haemophilus influenzae: understanding virulence and commensal behavior
-
Erwin A.L., Smith A.L. Nontypeable Haemophilus influenzae: understanding virulence and commensal behavior. Trends Microbiol. 2007, 15:355-362.
-
(2007)
Trends Microbiol.
, vol.15
, pp. 355-362
-
-
Erwin, A.L.1
Smith, A.L.2
-
26
-
-
0027400465
-
High-molecular-weight proteins of nontypable Haemophilus influenzae mediate attachment to human epithelial cells
-
St Geme J.W., et al. High-molecular-weight proteins of nontypable Haemophilus influenzae mediate attachment to human epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 1993, 90:2875-2879.
-
(1993)
Proc. Natl. Acad. Sci. U.S.A.
, vol.90
, pp. 2875-2879
-
-
St Geme, J.W.1
-
27
-
-
0034034907
-
Maturation and secretion of the non-typable Haemophilus influenzae HMW1 adhesin: roles of the N-terminal and C-terminal domains
-
Grass S., St Geme J.W. Maturation and secretion of the non-typable Haemophilus influenzae HMW1 adhesin: roles of the N-terminal and C-terminal domains. Mol. Microbiol. 2000, 36:55-67.
-
(2000)
Mol. Microbiol.
, vol.36
, pp. 55-67
-
-
Grass, S.1
St Geme, J.W.2
-
28
-
-
54449094921
-
The Haemophilus influenzae HMW1 adhesin is a glycoprotein with an unusual N-linked carbohydrate modification
-
Gross J., et al. The Haemophilus influenzae HMW1 adhesin is a glycoprotein with an unusual N-linked carbohydrate modification. J. Biol. Chem. 2008, 283:26010-26015.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 26010-26015
-
-
Gross, J.1
-
29
-
-
77954080496
-
The Haemophilus influenzae HMW1C protein is a glycosyltransferase that transfers hexose residues to asparagine sites in the HMW1 adhesin
-
Grass S., et al. The Haemophilus influenzae HMW1C protein is a glycosyltransferase that transfers hexose residues to asparagine sites in the HMW1 adhesin. PLoS Pathog. 2010, 6:e1000919.
-
(2010)
PLoS Pathog.
, vol.6
, pp. e1000919
-
-
Grass, S.1
-
30
-
-
0028108617
-
The HMW1 adhesin of nontypeable Haemophilus influenzae recognizes sialylated glycoprotein receptors on cultured human epithelial cells
-
St Geme J.W. The HMW1 adhesin of nontypeable Haemophilus influenzae recognizes sialylated glycoprotein receptors on cultured human epithelial cells. Infect. Immun. 1994, 62:3881-3889.
-
(1994)
Infect. Immun.
, vol.62
, pp. 3881-3889
-
-
St Geme, J.W.1
-
31
-
-
84901344088
-
The HMW1C-like glycosyltransferases - an enzyme family with a sweet tooth for simple sugars
-
McCann J.R., St Geme J.W. The HMW1C-like glycosyltransferases - an enzyme family with a sweet tooth for simple sugars. PLoS Pathog. 2014, 10:e1003977.
-
(2014)
PLoS Pathog.
, vol.10
, pp. e1003977
-
-
McCann, J.R.1
St Geme, J.W.2
-
32
-
-
33645515709
-
Identification of a two-partner secretion locus of enterotoxigenic Escherichia coli
-
Fleckenstein J.M., et al. Identification of a two-partner secretion locus of enterotoxigenic Escherichia coli. Infect. Immun. 2006, 74:2245-2258.
-
(2006)
Infect. Immun.
, vol.74
, pp. 2245-2258
-
-
Fleckenstein, J.M.1
-
33
-
-
84893152008
-
Molecular analysis of an alternative N-glycosylation machinery by functional transfer from Actinobacillus pleuropneumoniae to Escherichia coli
-
Naegeli A., et al. Molecular analysis of an alternative N-glycosylation machinery by functional transfer from Actinobacillus pleuropneumoniae to Escherichia coli. J. Biol. Chem. 2014, 289:2170-2179.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 2170-2179
-
-
Naegeli, A.1
-
34
-
-
80055095714
-
Structural insights into the glycosyltransferase activity of the Actinobacillus pleuropneumoniae HMW1C-like protein
-
Kawai F., et al. Structural insights into the glycosyltransferase activity of the Actinobacillus pleuropneumoniae HMW1C-like protein. J. Biol. Chem. 2011, 286:38546-38557.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 38546-38557
-
-
Kawai, F.1
-
35
-
-
6444243531
-
Campylobacter, from obscurity to celebrity
-
Butzler J.P. Campylobacter, from obscurity to celebrity. Clin. Microbiol. Infect. 2004, 10:868-876.
-
(2004)
Clin. Microbiol. Infect.
, vol.10
, pp. 868-876
-
-
Butzler, J.P.1
-
36
-
-
20244371925
-
Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway
-
Linton D., et al. Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Mol. Microbiol. 2005, 55:1695-1703.
-
(2005)
Mol. Microbiol.
, vol.55
, pp. 1695-1703
-
-
Linton, D.1
-
37
-
-
0011928107
-
N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli
-
Wacker M., et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 2002, 298:1790-1793.
-
(2002)
Science
, vol.298
, pp. 1790-1793
-
-
Wacker, M.1
-
38
-
-
0028834273
-
STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo
-
Zufferey R., et al. STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo. EMBO J. 1995, 14:4949-4960.
-
(1995)
EMBO J.
, vol.14
, pp. 4949-4960
-
-
Zufferey, R.1
-
39
-
-
0036127088
-
Campylobacter protein glycosylation affects host cell interactions
-
Szymanski C.M., et al. Campylobacter protein glycosylation affects host cell interactions. Infect. Immun. 2002, 70:2242-2244.
-
(2002)
Infect. Immun.
, vol.70
, pp. 2242-2244
-
-
Szymanski, C.M.1
-
40
-
-
3142673556
-
The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks
-
Karlyshev A.V., et al. The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology 2004, 150:1957-1964.
-
(2004)
Microbiology
, vol.150
, pp. 1957-1964
-
-
Karlyshev, A.V.1
-
41
-
-
4544254484
-
N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81-176
-
Larsen J.C., et al. N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81-176. J. Bacteriol. 2004, 186:6508-6514.
-
(2004)
J. Bacteriol.
, vol.186
, pp. 6508-6514
-
-
Larsen, J.C.1
-
42
-
-
79952299139
-
Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni
-
Scott N.E., et al. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol. Cell. Proteomics 2011, 10:1-18.
-
(2011)
Mol. Cell. Proteomics
, vol.10
, pp. 1-18
-
-
Scott, N.E.1
-
43
-
-
84877799105
-
N-glycosylation of Campylobacter jejuni surface proteins promotes bacterial fitness
-
Alemka A., et al. N-glycosylation of Campylobacter jejuni surface proteins promotes bacterial fitness. Infect. Immun. 2013, 81:1674-1682.
-
(2013)
Infect. Immun.
, vol.81
, pp. 1674-1682
-
-
Alemka, A.1
-
44
-
-
70349279995
-
Study of free oligosaccharides derived from the bacterial N-glycosylation pathway
-
Nothaft H., et al. Study of free oligosaccharides derived from the bacterial N-glycosylation pathway. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:15019-15024.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 15019-15024
-
-
Nothaft, H.1
-
45
-
-
84884140839
-
Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains
-
Li S., et al. Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature 2013, 501:242-246.
-
(2013)
Nature
, vol.501
, pp. 242-246
-
-
Li, S.1
-
46
-
-
84884137769
-
A type III effector antagonizes death receptor signalling during bacterial gut infection
-
Pearson J.S., et al. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 2013, 501:247-251.
-
(2013)
Nature
, vol.501
, pp. 247-251
-
-
Pearson, J.S.1
-
47
-
-
77954066144
-
The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-kappaB p65
-
Newton H.J., et al. The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-kappaB p65. PLoS Pathog. 2010, 6:e1000898.
-
(2010)
PLoS Pathog.
, vol.6
, pp. e1000898
-
-
Newton, H.J.1
-
48
-
-
77649216223
-
The type III secretion effector NleE inhibits NF-kappaB activation
-
Nadler C., et al. The type III secretion effector NleE inhibits NF-kappaB activation. PLoS Pathog. 2010, 6:e1000743.
-
(2010)
PLoS Pathog.
, vol.6
, pp. e1000743
-
-
Nadler, C.1
-
49
-
-
84862908207
-
Cell death and infection: a double-edged sword for host and pathogen survival
-
Ashida H., et al. Cell death and infection: a double-edged sword for host and pathogen survival. J. Cell Biol. 2011, 195:931-942.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 931-942
-
-
Ashida, H.1
-
50
-
-
53249103041
-
Molecular mechanisms of O-GlcNAcylation
-
Hurtado-Guerrero R., et al. Molecular mechanisms of O-GlcNAcylation. Curr. Opin. Struct. Biol. 2008, 18:551-557.
-
(2008)
Curr. Opin. Struct. Biol.
, vol.18
, pp. 551-557
-
-
Hurtado-Guerrero, R.1
-
51
-
-
84919629055
-
Synthesis of and specific antibody generation for glycopeptides with arginine N-GlcNAcylation
-
Pan M., et al. Synthesis of and specific antibody generation for glycopeptides with arginine N-GlcNAcylation. Angew. Chem. Int. Ed. Engl. 2014, 53:14517-14521.
-
(2014)
Angew. Chem. Int. Ed. Engl.
, vol.53
, pp. 14517-14521
-
-
Pan, M.1
-
52
-
-
17444366186
-
Clostridium difficile toxins: mechanism of action and role in disease
-
Voth D.E., Ballard J.D. Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 2005, 18:247-263.
-
(2005)
Clin. Microbiol. Rev.
, vol.18
, pp. 247-263
-
-
Voth, D.E.1
Ballard, J.D.2
-
53
-
-
77957988127
-
The role of toxin A and toxin B in Clostridium difficile infection
-
Kuehne S.A., et al. The role of toxin A and toxin B in Clostridium difficile infection. Nature 2010, 467:711-713.
-
(2010)
Nature
, vol.467
, pp. 711-713
-
-
Kuehne, S.A.1
-
54
-
-
42749095602
-
Structure and mode of action of clostridial glucosylating toxins: the ABCD model
-
Jank T., Aktories K. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol. 2008, 16:222-229.
-
(2008)
Trends Microbiol.
, vol.16
, pp. 222-229
-
-
Jank, T.1
Aktories, K.2
-
55
-
-
77956461530
-
Clostridial glucosylating toxins enter cells via clathrin-mediated endocytosis
-
Papatheodorou P., et al. Clostridial glucosylating toxins enter cells via clathrin-mediated endocytosis. PLoS ONE 2010, 5:e10673.
-
(2010)
PLoS ONE
, vol.5
, pp. e10673
-
-
Papatheodorou, P.1
-
56
-
-
0029054398
-
Glucosylation of Rho proteins by Clostridium difficile toxin B
-
Just I., et al. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 1995, 375:500-503.
-
(1995)
Nature
, vol.375
, pp. 500-503
-
-
Just, I.1
-
57
-
-
0029011449
-
The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins
-
Just I., et al. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem. 1995, 270:13932-13936.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 13932-13936
-
-
Just, I.1
-
58
-
-
0032515914
-
Glucosylation and ADP ribosylation of rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling
-
Sehr P., et al. Glucosylation and ADP ribosylation of rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling. Biochemistry 1998, 37:5296-5304.
-
(1998)
Biochemistry
, vol.37
, pp. 5296-5304
-
-
Sehr, P.1
-
59
-
-
0032831781
-
Monoglucosylation of RhoA at threonine 37 blocks cytosol-membrane cycling
-
Genth H., et al. Monoglucosylation of RhoA at threonine 37 blocks cytosol-membrane cycling. J. Biol. Chem. 1999, 274:29050-29056.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 29050-29056
-
-
Genth, H.1
-
61
-
-
34247229774
-
A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C
-
Amimoto K., et al. A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C. Microbiology 2007, 153:1198-1206.
-
(2007)
Microbiology
, vol.153
, pp. 1198-1206
-
-
Amimoto, K.1
-
62
-
-
84887456408
-
A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of Gq and Gi proteins
-
Jank T., et al. A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of Gq and Gi proteins. Nat. Struct. Mol. Biol. 2013, 20:1273-1280.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 1273-1280
-
-
Jank, T.1
-
63
-
-
84907270863
-
Innate immune sensing of bacterial modifications of Rho GTPases by the pyrin inflammasome
-
Xu H., et al. Innate immune sensing of bacterial modifications of Rho GTPases by the pyrin inflammasome. Nature 2014, 513:237-241.
-
(2014)
Nature
, vol.513
, pp. 237-241
-
-
Xu, H.1
-
64
-
-
78049370513
-
Modulation of host cell function by Legionella pneumophila type IV effectors
-
Hubber A., Roy C.R. Modulation of host cell function by Legionella pneumophila type IV effectors. Annu. Rev. Cell Dev. Biol. 2010, 26:261-283.
-
(2010)
Annu. Rev. Cell Dev. Biol.
, vol.26
, pp. 261-283
-
-
Hubber, A.1
Roy, C.R.2
-
65
-
-
81355138899
-
Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors
-
Ge J., Shao F. Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors. Cell. Microbiol. 2011, 13:1870-1880.
-
(2011)
Cell. Microbiol.
, vol.13
, pp. 1870-1880
-
-
Ge, J.1
Shao, F.2
-
66
-
-
0037222925
-
Purification and characterization of a UDP-glucosyltransferase produced by Legionella pneumophila
-
Belyi I., et al. Purification and characterization of a UDP-glucosyltransferase produced by Legionella pneumophila. Infect. Immun. 2003, 71:181-186.
-
(2003)
Infect. Immun.
, vol.71
, pp. 181-186
-
-
Belyi, I.1
-
67
-
-
33750944019
-
Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A
-
Belyi Y., et al. Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:16953-16958.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 16953-16958
-
-
Belyi, Y.1
-
68
-
-
77449117410
-
Structural basis of the action of glucosyltransferase Lgt1 from Legionella pneumophila
-
Lu W., et al. Structural basis of the action of glucosyltransferase Lgt1 from Legionella pneumophila. J. Mol. Biol. 2010, 396:321-331.
-
(2010)
J. Mol. Biol.
, vol.396
, pp. 321-331
-
-
Lu, W.1
-
69
-
-
84055202984
-
Effector glycosyltransferases in Legionella
-
Belyi Y., et al. Effector glycosyltransferases in Legionella. Front. Microbiol. 2011, 2:76.
-
(2011)
Front. Microbiol.
, vol.2
, pp. 76
-
-
Belyi, Y.1
-
70
-
-
84055207532
-
Aminoacyl-tRNA-charged eukaryotic elongation factor 1A is the bona fide substrate for Legionella pneumophila effector glucosyltransferases
-
Tzivelekidis T., et al. Aminoacyl-tRNA-charged eukaryotic elongation factor 1A is the bona fide substrate for Legionella pneumophila effector glucosyltransferases. PLoS ONE 2011, 6:e29525.
-
(2011)
PLoS ONE
, vol.6
, pp. e29525
-
-
Tzivelekidis, T.1
-
71
-
-
41949084350
-
Lgt: a family of cytotoxic glucosyltransferases produced by Legionella pneumophila
-
Belyi Y., et al. Lgt: a family of cytotoxic glucosyltransferases produced by Legionella pneumophila. J. Bacteriol. 2008, 190:3026-3035.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 3026-3035
-
-
Belyi, Y.1
-
72
-
-
25644436944
-
Translation initiation: structures, mechanisms and evolution
-
Marintchev A., Wagner G. Translation initiation: structures, mechanisms and evolution. Q. Rev. Biophys. 2004, 37:197-284.
-
(2004)
Q. Rev. Biophys.
, vol.37
, pp. 197-284
-
-
Marintchev, A.1
Wagner, G.2
-
73
-
-
67749124468
-
Region of elongation factor 1A1 involved in substrate recognition by Legionella pneumophila glucosyltransferase Lgt1: identification of Lgt1 as a retaining glucosyltransferase
-
Belyi Y., et al. Region of elongation factor 1A1 involved in substrate recognition by Legionella pneumophila glucosyltransferase Lgt1: identification of Lgt1 as a retaining glucosyltransferase. J. Biol. Chem. 2009, 284:20167-20174.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 20167-20174
-
-
Belyi, Y.1
-
74
-
-
84857148914
-
From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis
-
Leyton D.L., et al. From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nat. Rev. Microbiol. 2012, 10:213-225.
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 213-225
-
-
Leyton, D.L.1
-
75
-
-
0035159696
-
Enterotoxigenic Escherichia coli TibA glycoprotein adheres to human intestine epithelial cells
-
Lindenthal C., Elsinghorst E.A. Enterotoxigenic Escherichia coli TibA glycoprotein adheres to human intestine epithelial cells. Infect. Immun. 2001, 69:52-57.
-
(2001)
Infect. Immun.
, vol.69
, pp. 52-57
-
-
Lindenthal, C.1
Elsinghorst, E.A.2
-
76
-
-
84907699044
-
An iron-containing dodecameric heptosyltransferase family modifies bacterial autotransporters in pathogenesis
-
Lu Q., et al. An iron-containing dodecameric heptosyltransferase family modifies bacterial autotransporters in pathogenesis. Cell Host Microbe 2014, 16:351-363.
-
(2014)
Cell Host Microbe
, vol.16
, pp. 351-363
-
-
Lu, Q.1
-
77
-
-
84925185973
-
A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family
-
Yao Q., et al. A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family. Elife 2014, 3:e03714.
-
(2014)
Elife
, vol.3
, pp. e03714
-
-
Yao, Q.1
-
78
-
-
62249166648
-
Glycosylation and biogenesis of a family of serine-rich bacterial adhesins
-
Zhou M., Wu H. Glycosylation and biogenesis of a family of serine-rich bacterial adhesins. Microbiology 2009, 155:317-327.
-
(2009)
Microbiology
, vol.155
, pp. 317-327
-
-
Zhou, M.1
Wu, H.2
-
79
-
-
84863566088
-
A role for glycosylated serine-rich repeat proteins in Gram-positive bacterial pathogenesis
-
Lizcano A., et al. A role for glycosylated serine-rich repeat proteins in Gram-positive bacterial pathogenesis. Mol. Oral Microbiol. 2012, 27:257-269.
-
(2012)
Mol. Oral Microbiol.
, vol.27
, pp. 257-269
-
-
Lizcano, A.1
-
80
-
-
17144431888
-
A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb
-
Plummer C., et al. A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. Br. J. Haematol. 2005, 129:101-109.
-
(2005)
Br. J. Haematol.
, vol.129
, pp. 101-109
-
-
Plummer, C.1
-
81
-
-
65549095152
-
The group B streptococcal serine-rich repeat 1 glycoprotein mediates penetration of the blood-brain barrier
-
van Sorge N.M., et al. The group B streptococcal serine-rich repeat 1 glycoprotein mediates penetration of the blood-brain barrier. J. Infect. Dis. 2009, 199:1479-1487.
-
(2009)
J. Infect. Dis.
, vol.199
, pp. 1479-1487
-
-
van Sorge, N.M.1
-
82
-
-
21644488274
-
Genome analysis reveals pili in Group B Streptococcus
-
Lauer P., et al. Genome analysis reveals pili in Group B Streptococcus. Science 2005, 309:105.
-
(2005)
Science
, vol.309
, pp. 105
-
-
Lauer, P.1
-
83
-
-
0033431770
-
Identification of dipeptide repeats and a cell wall sorting signal in the fimbriae-associated adhesin, Fap1, of Streptococcus parasanguis
-
Wu H., Fives-Taylor P.M. Identification of dipeptide repeats and a cell wall sorting signal in the fimbriae-associated adhesin, Fap1, of Streptococcus parasanguis. Mol. Microbiol. 1999, 34:1070-1081.
-
(1999)
Mol. Microbiol.
, vol.34
, pp. 1070-1081
-
-
Wu, H.1
Fives-Taylor, P.M.2
-
84
-
-
70349327514
-
Streptococcus adherence and colonization
-
Nobbs A.H., et al. Streptococcus adherence and colonization. Microbiol. Mol. Biol. Rev. 2009, 73:407-450.
-
(2009)
Microbiol. Mol. Biol. Rev.
, vol.73
, pp. 407-450
-
-
Nobbs, A.H.1
-
85
-
-
84904514340
-
The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold
-
Zhang H., et al. The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold. Nat. Commun. 2014, 5:4339.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4339
-
-
Zhang, H.1
-
86
-
-
33846895628
-
Two gene determinants are differentially involved in the biogenesis of Fap1 precursors in Streptococcus parasanguis
-
Wu H., et al. Two gene determinants are differentially involved in the biogenesis of Fap1 precursors in Streptococcus parasanguis. J. Bacteriol. 2007, 189:1390-1398.
-
(2007)
J. Bacteriol.
, vol.189
, pp. 1390-1398
-
-
Wu, H.1
-
87
-
-
34248363088
-
The glycan moieties and the N-terminal polypeptide backbone of a fimbria-associated adhesin, Fap1, play distinct roles in the biofilm development of Streptococcus parasanguinis
-
Wu H., et al. The glycan moieties and the N-terminal polypeptide backbone of a fimbria-associated adhesin, Fap1, play distinct roles in the biofilm development of Streptococcus parasanguinis. Infect. Immun. 2007, 75:2181-2188.
-
(2007)
Infect. Immun.
, vol.75
, pp. 2181-2188
-
-
Wu, H.1
-
88
-
-
38949153119
-
Interaction between two putative glycosyltransferases is required for glycosylation of a serine-rich streptococcal adhesin
-
Bu S., et al. Interaction between two putative glycosyltransferases is required for glycosylation of a serine-rich streptococcal adhesin. J. Bacteriol. 2008, 190:1256-1266.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1256-1266
-
-
Bu, S.1
-
89
-
-
77951246027
-
A novel glucosyltransferase is required for glycosylation of a serine-rich adhesin and biofilm formation by Streptococcus parasanguinis
-
Zhou M., et al. A novel glucosyltransferase is required for glycosylation of a serine-rich adhesin and biofilm formation by Streptococcus parasanguinis. J. Biol. Chem. 2010, 285:12140-12148.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 12140-12148
-
-
Zhou, M.1
|