메뉴 건너뛰기




Volumn 19, Issue 10, 2015, Pages 616-628

The Rediscovery of Slowness: Exploring the Timing of Cognition

Author keywords

Dynamical systems; Resting state activity; Whole brain modeling

Indexed keywords

BRAIN MODELS; COMPUTATION THEORY; DYNAMICAL SYSTEMS; NEUROIMAGING; TIMING CIRCUITS;

EID: 84942124585     PISSN: 13646613     EISSN: 1879307X     Source Type: Journal    
DOI: 10.1016/j.tics.2015.07.011     Document Type: Review
Times cited : (95)

References (78)
  • 2
    • 0034488449 scopus 로고    scopus 로고
    • Individual differences in reasoning: implications for the rationality debate?
    • Stanovich K.E., West R.F. Individual differences in reasoning: implications for the rationality debate?. Behav. Brain Sci. 2000, 23:645-665.
    • (2000) Behav. Brain Sci. , vol.23 , pp. 645-665
    • Stanovich, K.E.1    West, R.F.2
  • 4
    • 0016264378 scopus 로고
    • Judgment under uncertainty: heuristics and biases
    • Tversky A., Kahneman D. Judgment under uncertainty: heuristics and biases. Science 1974, 185:1124-1131.
    • (1974) Science , vol.185 , pp. 1124-1131
    • Tversky, A.1    Kahneman, D.2
  • 6
    • 0035318822 scopus 로고    scopus 로고
    • The brainweb: phase synchronization and large-scale integration
    • Varela F., et al. The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2001, 2:229-239.
    • (2001) Nat. Rev. Neurosci. , vol.2 , pp. 229-239
    • Varela, F.1
  • 7
    • 84905437026 scopus 로고    scopus 로고
    • Functional architectures and structured flows on manifolds: a dynamical framework for motor behavior
    • Huys R., et al. Functional architectures and structured flows on manifolds: a dynamical framework for motor behavior. Psychol. Rev. 2014, 121:302-336.
    • (2014) Psychol. Rev. , vol.121 , pp. 302-336
    • Huys, R.1
  • 8
    • 80053456319 scopus 로고    scopus 로고
    • Time scale hierarchies in the functional organization of complex behaviors
    • Perdikis D., et al. Time scale hierarchies in the functional organization of complex behaviors. PLoS Comput. Biol. 2011, 7:e1002198.
    • (2011) PLoS Comput. Biol. , vol.7 , pp. e1002198
    • Perdikis, D.1
  • 9
    • 80053453484 scopus 로고    scopus 로고
    • Building neurocognitive networks with a distributed functional architecture
    • Woodman M., et al. Building neurocognitive networks with a distributed functional architecture. Adv. Exp. Med. Biol. 2011, 718:101-109.
    • (2011) Adv. Exp. Med. Biol. , vol.718 , pp. 101-109
    • Woodman, M.1
  • 10
    • 84904883140 scopus 로고    scopus 로고
    • On the nature of seizure dynamics
    • Jirsa V.K., et al. On the nature of seizure dynamics. Brain 2014, 137:2210-2230.
    • (2014) Brain , vol.137 , pp. 2210-2230
    • Jirsa, V.K.1
  • 11
    • 79951828685 scopus 로고    scopus 로고
    • Complex processes from dynamical architectures with time-scale hierarchy
    • Perdikis D., et al. Complex processes from dynamical architectures with time-scale hierarchy. PLoS ONE 2011, 6:e16589.
    • (2011) PLoS ONE , vol.6 , pp. e16589
    • Perdikis, D.1
  • 12
    • 84894232779 scopus 로고    scopus 로고
    • Tracking whole-brain connectivity dynamics in the resting state
    • Allen E.A., et al. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 2014, 24:663-676.
    • (2014) Cereb. Cortex , vol.24 , pp. 663-676
    • Allen, E.A.1
  • 13
    • 84914820204 scopus 로고    scopus 로고
    • Functional connectivity dynamics: modeling the switching behavior of the resting state
    • Hansen E.C., et al. Functional connectivity dynamics: modeling the switching behavior of the resting state. Neuroimage 2015, 105:525-535.
    • (2015) Neuroimage , vol.105 , pp. 525-535
    • Hansen, E.C.1
  • 14
    • 77649218601 scopus 로고    scopus 로고
    • Toward discovery science of human brain function
    • Biswal B.B., et al. Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:4734-4739.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 4734-4739
    • Biswal, B.B.1
  • 15
    • 34548535101 scopus 로고    scopus 로고
    • A default mode of brain function: a brief history of an evolving idea
    • Raichle M.E., Snyder A.Z. A default mode of brain function: a brief history of an evolving idea. Neuroimage 2007, 37:1083-1090.
    • (2007) Neuroimage , vol.37 , pp. 1083-1090
    • Raichle, M.E.1    Snyder, A.Z.2
  • 16
    • 34548544198 scopus 로고    scopus 로고
    • Does the brain have a baseline? Why we should be resisting a rest
    • Morcom A.M., Fletcher P.C. Does the brain have a baseline? Why we should be resisting a rest. Neuroimage 2007, 37:1073-1082.
    • (2007) Neuroimage , vol.37 , pp. 1073-1082
    • Morcom, A.M.1    Fletcher, P.C.2
  • 17
    • 0035895264 scopus 로고    scopus 로고
    • A default mode of brain function
    • Raichle M.E., et al. A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:676-682.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 676-682
    • Raichle, M.E.1
  • 18
    • 25444456446 scopus 로고    scopus 로고
    • Investigations into resting-state connectivity using independent component analysis
    • Beckmann C.F., et al. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2005, 360:1001-1013.
    • (2005) Philos. Trans. R. Soc. Lond. B: Biol. Sci. , vol.360 , pp. 1001-1013
    • Beckmann, C.F.1
  • 19
    • 24144436151 scopus 로고    scopus 로고
    • Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis
    • Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 2005, 26:15-29.
    • (2005) Hum. Brain Mapp. , vol.26 , pp. 15-29
    • Fransson, P.1
  • 20
    • 0029166541 scopus 로고
    • Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
    • Biswal B., et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995, 34:537-541.
    • (1995) Magn. Reson. Med. , vol.34 , pp. 537-541
    • Biswal, B.1
  • 21
    • 22144469412 scopus 로고    scopus 로고
    • The human brain is intrinsically organized into dynamic, anticorrelated functional networks
    • Fox M.D., et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:9673-9678.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 9673-9678
    • Fox, M.D.1
  • 22
    • 60549103853 scopus 로고    scopus 로고
    • Complex brain networks: graph theoretical analysis of structural and functional systems
    • Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10:186-198.
    • (2009) Nat. Rev. Neurosci. , vol.10 , pp. 186-198
    • Bullmore, E.1    Sporns, O.2
  • 23
    • 84877149884 scopus 로고    scopus 로고
    • Resting brains never rest: computational insights into potential cognitive architectures
    • Deco G., et al. Resting brains never rest: computational insights into potential cognitive architectures. Trends Neurosci. 2013, 36:268-274.
    • (2013) Trends Neurosci. , vol.36 , pp. 268-274
    • Deco, G.1
  • 24
    • 0036322886 scopus 로고    scopus 로고
    • Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
    • Tzourio-Mazoyer N., et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15:273-289.
    • (2002) Neuroimage , vol.15 , pp. 273-289
    • Tzourio-Mazoyer, N.1
  • 25
    • 33746932485 scopus 로고    scopus 로고
    • An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
    • Desikan R.S., et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006, 31:968-980.
    • (2006) Neuroimage , vol.31 , pp. 968-980
    • Desikan, R.S.1
  • 26
    • 34247578209 scopus 로고    scopus 로고
    • Intrinsic functional architecture in the anaesthetized monkey brain
    • Vincent J.L., et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 2007, 447:83-86.
    • (2007) Nature , vol.447 , pp. 83-86
    • Vincent, J.L.1
  • 27
    • 65949115930 scopus 로고    scopus 로고
    • Functional connectivity of the macaque brain across stimulus and arousal states
    • Moeller S., et al. Functional connectivity of the macaque brain across stimulus and arousal states. J. Neurosci. 2009, 29:5897-5909.
    • (2009) J. Neurosci. , vol.29 , pp. 5897-5909
    • Moeller, S.1
  • 28
    • 0032525177 scopus 로고    scopus 로고
    • The variable discharge of cortical neurons: implications for connectivity, computation, and information coding
    • Shadlen M.N., Newsome W.T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 1998, 18:3870-3896.
    • (1998) J. Neurosci. , vol.18 , pp. 3870-3896
    • Shadlen, M.N.1    Newsome, W.T.2
  • 29
    • 0027498486 scopus 로고
    • The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs
    • Softky W.R., Koch C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 1993, 13:334-350.
    • (1993) J. Neurosci. , vol.13 , pp. 334-350
    • Softky, W.R.1    Koch, C.2
  • 30
    • 77649187675 scopus 로고    scopus 로고
    • Stimulus onset quenches neural variability: a widespread cortical phenomenon
    • Churchland M.M., et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 2010, 13:369-378.
    • (2010) Nat. Neurosci. , vol.13 , pp. 369-378
    • Churchland, M.M.1
  • 31
    • 0030162959 scopus 로고    scopus 로고
    • Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI
    • Basser P.J., Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 1996, 111:209-219.
    • (1996) J. Magn. Reson. B , vol.111 , pp. 209-219
    • Basser, P.J.1    Pierpaoli, C.2
  • 32
    • 0036868692 scopus 로고    scopus 로고
    • The basis of anisotropic water diffusion in the nervous system - a technical review
    • Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed. 2002, 15:435-455.
    • (2002) NMR Biomed. , vol.15 , pp. 435-455
    • Beaulieu, C.1
  • 33
    • 67651048947 scopus 로고    scopus 로고
    • Using diffusion imaging to study human connectional anatomy
    • Johansen-Berg H., Rushworth M.F. Using diffusion imaging to study human connectional anatomy. Annu. Rev. Neurosci. 2009, 32:75-94.
    • (2009) Annu. Rev. Neurosci. , vol.32 , pp. 75-94
    • Johansen-Berg, H.1    Rushworth, M.F.2
  • 34
    • 77957925364 scopus 로고    scopus 로고
    • MR connectomics: principles and challenges
    • Hagmann P., et al. MR connectomics: principles and challenges. J. Neurosci. Methods 2010, 194:34-45.
    • (2010) J. Neurosci. Methods , vol.194 , pp. 34-45
    • Hagmann, P.1
  • 35
    • 75249093217 scopus 로고    scopus 로고
    • Time-frequency dynamics of resting-state brain connectivity measured with fMRI
    • Chang C., Glover G.H. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 2010, 50:81-98.
    • (2010) Neuroimage , vol.50 , pp. 81-98
    • Chang, C.1    Glover, G.H.2
  • 36
    • 84880330342 scopus 로고    scopus 로고
    • Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques
    • Hutchison R.M., et al. Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum. Brain Mapp. 2013, 34:2154-2177.
    • (2013) Hum. Brain Mapp. , vol.34 , pp. 2154-2177
    • Hutchison, R.M.1
  • 37
    • 84870997831 scopus 로고    scopus 로고
    • A sliding time-window ICA reveals spatial variability of the default mode network in time
    • Kiviniemi V., et al. A sliding time-window ICA reveals spatial variability of the default mode network in time. Brain Connect. 2011, 1:339-347.
    • (2011) Brain Connect. , vol.1 , pp. 339-347
    • Kiviniemi, V.1
  • 38
    • 84924363500 scopus 로고    scopus 로고
    • Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity
    • Ponce-Alvarez A., et al. Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity. PLoS Comput. Biol. 2015, 11:e1004100.
    • (2015) PLoS Comput. Biol. , vol.11 , pp. e1004100
    • Ponce-Alvarez, A.1
  • 39
    • 84891761470 scopus 로고    scopus 로고
    • The metastable brain
    • Tognoli E., Kelso J.A. The metastable brain. Neuron 2014, 81:35-48.
    • (2014) Neuron , vol.81 , pp. 35-48
    • Tognoli, E.1    Kelso, J.A.2
  • 40
    • 84921415084 scopus 로고    scopus 로고
    • Signature of consciousness in the dynamics of resting-state brain activity
    • Barttfeld P., et al. Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:887-892.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 887-892
    • Barttfeld, P.1
  • 41
    • 78650339790 scopus 로고    scopus 로고
    • Emerging concepts for the dynamical organization of resting-state activity in the brain
    • Deco G., et al. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 2011, 12:43-56.
    • (2011) Nat. Rev. Neurosci. , vol.12 , pp. 43-56
    • Deco, G.1
  • 42
    • 84857802687 scopus 로고    scopus 로고
    • Ongoing cortical activity at rest: criticality, multistability, and ghost attractors
    • Deco G., Jirsa V.K. Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J. Neurosci. 2012, 32:3366-3375.
    • (2012) J. Neurosci. , vol.32 , pp. 3366-3375
    • Deco, G.1    Jirsa, V.K.2
  • 43
    • 34548125774 scopus 로고    scopus 로고
    • Neuronal dynamics and brain connectivity
    • Springer, V.K. Jirsa, A.R. McIntosh (Eds.)
    • Breakspear M., Jirsa V. Neuronal dynamics and brain connectivity. Handbook of Brain Connectivity 2007, 3-64. Springer. V.K. Jirsa, A.R. McIntosh (Eds.).
    • (2007) Handbook of Brain Connectivity , pp. 3-64
    • Breakspear, M.1    Jirsa, V.2
  • 44
    • 35949030064 scopus 로고
    • Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems
    • Haken H. Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems. Rev. Mod. Phys. 1975, 47:67-121.
    • (1975) Rev. Mod. Phys. , vol.47 , pp. 67-121
    • Haken, H.1
  • 45
    • 84896400750 scopus 로고    scopus 로고
    • Exploring the network dynamics underlying brain activity during rest
    • Cabral J., et al. Exploring the network dynamics underlying brain activity during rest. Prog. Neurobiol. 2014, 114:102-131.
    • (2014) Prog. Neurobiol. , vol.114 , pp. 102-131
    • Cabral, J.1
  • 46
    • 67649886440 scopus 로고    scopus 로고
    • Key role of coupling, delay, and noise in resting brain fluctuations
    • Deco G., et al. Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:10302-10307.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 10302-10307
    • Deco, G.1
  • 47
    • 45449095668 scopus 로고    scopus 로고
    • Cortical network dynamics with time delays reveals functional connectivity in the resting brain
    • Ghosh A., et al. Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cogn. Neurodyn. 2008, 2:115-120.
    • (2008) Cogn. Neurodyn. , vol.2 , pp. 115-120
    • Ghosh, A.1
  • 48
    • 55449107481 scopus 로고    scopus 로고
    • Noise during rest enables the exploration of the brain's dynamic repertoire
    • Ghosh A., et al. Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS Comput. Biol. 2008, 4:e1000196.
    • (2008) PLoS Comput. Biol. , vol.4 , pp. e1000196
    • Ghosh, A.1
  • 49
    • 79956204167 scopus 로고    scopus 로고
    • Role of local network oscillations in resting-state functional connectivity
    • Cabral J., et al. Role of local network oscillations in resting-state functional connectivity. Neuroimage 2011, 57:130-139.
    • (2011) Neuroimage , vol.57 , pp. 130-139
    • Cabral, J.1
  • 50
    • 84896715198 scopus 로고    scopus 로고
    • Exploring mechanisms of spontaneous functional connectivity in MEG: How delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations
    • Cabral J., et al. Exploring mechanisms of spontaneous functional connectivity in MEG: How delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations. Neuroimage 2014, 90:423-435.
    • (2014) Neuroimage , vol.90 , pp. 423-435
    • Cabral, J.1
  • 51
    • 84880452652 scopus 로고    scopus 로고
    • Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations
    • Deco G., et al. Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J. Neurosci. 2013, 33:11239-11252.
    • (2013) J. Neurosci. , vol.33 , pp. 11239-11252
    • Deco, G.1
  • 52
    • 34547219105 scopus 로고    scopus 로고
    • Network structure of cerebral cortex shapes functional connectivity on multiple time scales
    • Honey C.J., et al. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:10240-10245.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 10240-10245
    • Honey, C.J.1
  • 53
    • 84919424460 scopus 로고    scopus 로고
    • Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders
    • Deco G., Kringelbach M.L. Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron 2014, 84:892-905.
    • (2014) Neuron , vol.84 , pp. 892-905
    • Deco, G.1    Kringelbach, M.L.2
  • 54
    • 79955766627 scopus 로고    scopus 로고
    • Biophysical mechanisms of multistability in resting-state cortical rhythms
    • Freyer F., et al. Biophysical mechanisms of multistability in resting-state cortical rhythms. J. Neurosci. 2011, 31:6353-6361.
    • (2011) J. Neurosci. , vol.31 , pp. 6353-6361
    • Freyer, F.1
  • 55
    • 84866102100 scopus 로고    scopus 로고
    • A canonical model of multistability and scale-invariance in biological systems
    • Freyer F., et al. A canonical model of multistability and scale-invariance in biological systems. PLoS Comput. Biol. 2012, 8:e1002634.
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002634
    • Freyer, F.1
  • 57
    • 84924359083 scopus 로고    scopus 로고
    • Critical slowing down governs the transition to neuron spiking
    • Meisel C., et al. Critical slowing down governs the transition to neuron spiking. PLoS Comput. Biol. 2015, 11:e1004097.
    • (2015) PLoS Comput. Biol. , vol.11 , pp. e1004097
    • Meisel, C.1
  • 58
    • 0023933891 scopus 로고
    • Dynamic pattern generation in behavioral and neural systems
    • Schoner G., Kelso J.A. Dynamic pattern generation in behavioral and neural systems. Science 1988, 239:1513-1520.
    • (1988) Science , vol.239 , pp. 1513-1520
    • Schoner, G.1    Kelso, J.A.2
  • 59
    • 0032533056 scopus 로고    scopus 로고
    • Connecting cortical and behavioral dynamics: bimanual coordination
    • Jirsa V.K., et al. Connecting cortical and behavioral dynamics: bimanual coordination. Neural Comput. 1998, 10:2019-2045.
    • (1998) Neural Comput. , vol.10 , pp. 2019-2045
    • Jirsa, V.K.1
  • 60
    • 0000618793 scopus 로고
    • Phase transitions in the human brain: spatial mode dynamics
    • Fuchs A., et al. Phase transitions in the human brain: spatial mode dynamics. Int. J. Bif. Chaos 1992, 2:917-939.
    • (1992) Int. J. Bif. Chaos , vol.2 , pp. 917-939
    • Fuchs, A.1
  • 61
    • 84924143434 scopus 로고    scopus 로고
    • State-dependencies of learning across brain scales
    • Ritter P., et al. State-dependencies of learning across brain scales. Front. Comput. Neurosci. 2015, 9:1.
    • (2015) Front. Comput. Neurosci. , vol.9 , pp. 1
    • Ritter, P.1
  • 62
    • 84933039534 scopus 로고    scopus 로고
    • Editorial: State-dependent brain computation
    • Ritter P., et al. Editorial: State-dependent brain computation. Front. Comput. Neurosci. 2015, 9:77.
    • (2015) Front. Comput. Neurosci. , vol.9 , pp. 77
    • Ritter, P.1
  • 63
    • 84929338311 scopus 로고    scopus 로고
    • Stimulus set meaningfulness and neurophysiological differentiation: a functional magnetic resonance imaging study
    • Boly M., et al. Stimulus set meaningfulness and neurophysiological differentiation: a functional magnetic resonance imaging study. PLoS ONE 2015, 10:e0125337.
    • (2015) PLoS ONE , vol.10 , pp. e0125337
    • Boly, M.1
  • 64
    • 78650972934 scopus 로고    scopus 로고
    • Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment
    • Berkes P., et al. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 2011, 331:83-87.
    • (2011) Science , vol.331 , pp. 83-87
    • Berkes, P.1
  • 65
    • 84932197976 scopus 로고    scopus 로고
    • Rethinking segregation and integration: contributions of whole-brain modelling
    • Deco G., et al. Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 2015, 16:430-439.
    • (2015) Nat. Rev. Neurosci. , vol.16 , pp. 430-439
    • Deco, G.1
  • 66
    • 36149005118 scopus 로고
    • On the theory of Brownian motion
    • Uhlenbeck G.E., Ornstein L.S. On the theory of Brownian motion. Phys. Rev. 1930, 36:823-841.
    • (1930) Phys. Rev. , vol.36 , pp. 823-841
    • Uhlenbeck, G.E.1    Ornstein, L.S.2
  • 67
    • 77952951715 scopus 로고    scopus 로고
    • The functional neuroanatomy of the evolving parent-infant relationship
    • Parsons C.E., et al. The functional neuroanatomy of the evolving parent-infant relationship. Prog. Neurobiol. 2010, 91:220-241.
    • (2010) Prog. Neurobiol. , vol.91 , pp. 220-241
    • Parsons, C.E.1
  • 68
    • 84855578888 scopus 로고    scopus 로고
    • Emotional relationships in mothers and infants: culture-common and community-specific characteristics of dyads from rural and metropolitan settings in Argentina, Italy, and the United States
    • Bornstein M.H., et al. Emotional relationships in mothers and infants: culture-common and community-specific characteristics of dyads from rural and metropolitan settings in Argentina, Italy, and the United States. J. Cross Cult. Psychol. 2012, 43:171-197.
    • (2012) J. Cross Cult. Psychol. , vol.43 , pp. 171-197
    • Bornstein, M.H.1
  • 69
    • 84904244508 scopus 로고    scopus 로고
    • Ready for action: a role for the brainstem in responding to infant vocalizations
    • Parsons C.E., et al. Ready for action: a role for the brainstem in responding to infant vocalizations. Soc. Cogn. Affect. Neurosci. 2014, 9:977-984.
    • (2014) Soc. Cogn. Affect. Neurosci. , vol.9 , pp. 977-984
    • Parsons, C.E.1
  • 70
    • 45749091796 scopus 로고    scopus 로고
    • A specific and rapid neural signature for parental instinct
    • Kringelbach M.L., et al. A specific and rapid neural signature for parental instinct. PLoS ONE 2008, 3:e1664.
    • (2008) PLoS ONE , vol.3 , pp. e1664
    • Kringelbach, M.L.1
  • 71
    • 84887049504 scopus 로고    scopus 로고
    • Understanding the human parental brain: a critical role of the orbitofrontal cortex
    • Parsons C.E., et al. Understanding the human parental brain: a critical role of the orbitofrontal cortex. Soc. Neurosci. 2013, 8:525-543.
    • (2013) Soc. Neurosci. , vol.8 , pp. 525-543
    • Parsons, C.E.1
  • 72
    • 84870405967 scopus 로고    scopus 로고
    • Maternal cognitions and mother-infant interaction in postnatal depression and generalized anxiety disorder
    • Stein A., et al. Maternal cognitions and mother-infant interaction in postnatal depression and generalized anxiety disorder. J. Abnorm. Psychol. 2012, 121:795-809.
    • (2012) J. Abnorm. Psychol. , vol.121 , pp. 795-809
    • Stein, A.1
  • 73
    • 31044440796 scopus 로고    scopus 로고
    • Top-down facilitation of visual recognition
    • Bar M., et al. Top-down facilitation of visual recognition. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:449-454.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 449-454
    • Bar, M.1
  • 74
    • 25144462139 scopus 로고    scopus 로고
    • The orbitofrontal cortex: linking reward to hedonic experience
    • Kringelbach M.L. The orbitofrontal cortex: linking reward to hedonic experience. Nat. Rev. Neurosci. 2005, 6:691-702.
    • (2005) Nat. Rev. Neurosci. , vol.6 , pp. 691-702
    • Kringelbach, M.L.1
  • 75
    • 84928954887 scopus 로고    scopus 로고
    • Pleasure systems in the brain
    • Berridge K.C., Kringelbach M.L. Pleasure systems in the brain. Neuron 2015, 86:646-664.
    • (2015) Neuron , vol.86 , pp. 646-664
    • Berridge, K.C.1    Kringelbach, M.L.2
  • 76
    • 84888868882 scopus 로고    scopus 로고
    • Fledgling pathoconnectomics of psychiatric disorders
    • Rubinov M., Bullmore E. Fledgling pathoconnectomics of psychiatric disorders. Trends Cogn. Sci. 2013, 17:641-647.
    • (2013) Trends Cogn. Sci. , vol.17 , pp. 641-647
    • Rubinov, M.1    Bullmore, E.2
  • 77
    • 85018936667 scopus 로고    scopus 로고
    • The virtual brain integrates computational modeling and multimodal neuroimaging
    • Ritter P., et al. The virtual brain integrates computational modeling and multimodal neuroimaging. Brain Connect. 2013, 3:121-145.
    • (2013) Brain Connect. , vol.3 , pp. 121-145
    • Ritter, P.1
  • 78
    • 82255165386 scopus 로고    scopus 로고
    • Balancing the brain: resting state networks and deep brain stimulation
    • Kringelbach M.L., et al. Balancing the brain: resting state networks and deep brain stimulation. Front. Integr. Neurosci. 2011, 5:8.
    • (2011) Front. Integr. Neurosci. , vol.5 , pp. 8
    • Kringelbach, M.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.