메뉴 건너뛰기




Volumn 18, Issue 4, 2015, Pages 829-843

Automatic segmentation of brain MRI through stationary wavelet transform and random forests

Author keywords

Anisotropic diffusion filtering; Brain MRI segmentation; Random forests; Stationary wavelet transform

Indexed keywords


EID: 84941994158     PISSN: 14337541     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10044-014-0373-y     Document Type: Article
Times cited : (17)

References (88)
  • 2
    • 84879150828 scopus 로고    scopus 로고
    • Looking into the brain: how can conventional, morphometric and functional MRI help in diagnosing and understanding PD?
    • Rizzo G, Tonon C, Lodi R (2012) Looking into the brain: how can conventional, morphometric and functional MRI help in diagnosing and understanding PD? Basal Ganglia 2:175–182
    • (2012) Basal Ganglia , vol.2 , pp. 175-182
    • Rizzo, G.1    Tonon, C.2    Lodi, R.3
  • 3
    • 33846794741 scopus 로고    scopus 로고
    • The use of functional MRI in traumatic brain injury diagnosis and treatment
    • Laatsch L (2007) The use of functional MRI in traumatic brain injury diagnosis and treatment. Phys Med Rehabil Clin N Am 18:69–85
    • (2007) Phys Med Rehabil Clin N Am , vol.18 , pp. 69-85
    • Laatsch, L.1
  • 4
    • 77955659227 scopus 로고    scopus 로고
    • Role of MRI in diagnosis and treatment of multiple sclerosis
    • Sahraian MA, Eshaghi A (2010) Role of MRI in diagnosis and treatment of multiple sclerosis. Clin Neurol Neurosurg 112:609–615
    • (2010) Clin Neurol Neurosurg , vol.112 , pp. 609-615
    • Sahraian, M.A.1    Eshaghi, A.2
  • 6
    • 79953216704 scopus 로고    scopus 로고
    • Application of magnetic resonance tractography in the perioperative planning of patients with eloquent region intra-axial brain lesions
    • Bagadia A, Purandare H, Misra BK, Gupta S (2011) Application of magnetic resonance tractography in the perioperative planning of patients with eloquent region intra-axial brain lesions. J Clin Neurosci 18:633–639
    • (2011) J Clin Neurosci , vol.18 , pp. 633-639
    • Bagadia, A.1    Purandare, H.2    Misra, B.K.3    Gupta, S.4
  • 7
    • 84880290213 scopus 로고    scopus 로고
    • Magnetic resonance volumetry reveals focal brain atrophy in transient epileptic amnesia
    • Butler C, Van Erp W, Bhaduri A, Hammers A, Heckemann R, Zeman A (2013) Magnetic resonance volumetry reveals focal brain atrophy in transient epileptic amnesia. Epilepsy Behav 28:363–369
    • (2013) Epilepsy Behav , vol.28 , pp. 363-369
    • Butler, C.1    Van Erp, W.2    Bhaduri, A.3    Hammers, A.4    Heckemann, R.5    Zeman, A.6
  • 10
    • 84875245586 scopus 로고    scopus 로고
    • Neuroimaging in aphasia treatment research: quantifying brain lesions after stroke
    • Crinion J, Holland AL, Copland DA, Thomson CK, Hillis AE (2013) Neuroimaging in aphasia treatment research: quantifying brain lesions after stroke. NeuroImage 73:208–214
    • (2013) NeuroImage , vol.73 , pp. 208-214
    • Crinion, J.1    Holland, A.L.2    Copland, D.A.3    Thomson, C.K.4    Hillis, A.E.5
  • 13
    • 31744442025 scopus 로고    scopus 로고
    • Intensity non-uniformity correction in MRI: existing methods and their validation
    • Belaroussi B, Milles J, Carme S, Zhu YM, Benoit-Cattin H (2006) Intensity non-uniformity correction in MRI: existing methods and their validation. Med Imag Anal 10:234–246
    • (2006) Med Imag Anal , vol.10 , pp. 234-246
    • Belaroussi, B.1    Milles, J.2    Carme, S.3    Zhu, Y.M.4    Benoit-Cattin, H.5
  • 16
    • 84876159802 scopus 로고    scopus 로고
    • New spatial based MRI image de-noising algorithm
    • Balfar MA (2013) New spatial based MRI image de-noising algorithm. Artif Intell Rev 39:225–235
    • (2013) Artif Intell Rev , vol.39 , pp. 225-235
    • Balfar, M.A.1
  • 17
    • 0025465145 scopus 로고
    • Scale-space and edge detection using anisotropic diffusion
    • Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12:629–639
    • (1990) IEEE Trans Pattern Anal Mach Intell , vol.12 , pp. 629-639
    • Perona, P.1    Malik, J.2
  • 19
    • 57949084975 scopus 로고    scopus 로고
    • Skull stripping and automatic segmentation of brain MRI using seed growth and threshold techniques. In: International conference on intelligent and advanced systems
    • Shanthi KJ, Kumar MS (2007) Skull stripping and automatic segmentation of brain MRI using seed growth and threshold techniques. In: International conference on intelligent and advanced systems. pp 422–426
    • (2007) pp 422–426
    • Shanthi, K.J.1    Kumar, M.S.2
  • 20
    • 78751562181 scopus 로고    scopus 로고
    • Novel approach for segmentation of brain magnetic resonance imaging using intensity based thresholding. In: IEEE international conference on communication control and computing technologies
    • Selvaraj D, Dhanasekaran R (2010) Novel approach for segmentation of brain magnetic resonance imaging using intensity based thresholding. In: IEEE international conference on communication control and computing technologies. pp 502–507
    • (2010) pp 502–507
    • Selvaraj, D.1    Dhanasekaran, R.2
  • 21
    • 0004073954 scopus 로고
    • American Mathematical Society, Providence
    • Szegö G (1967) Orthogonal polynomials. American Mathematical Society, Providence
    • (1967) Orthogonal polynomials
    • Szegö, G.1
  • 25
    • 0033646213 scopus 로고    scopus 로고
    • Automatic morphology-based brain segmentation (MBRASE) from MRI-T1 data
    • Stokking R, Vinchen KL, Viergever MA (2000) Automatic morphology-based brain segmentation (MBRASE) from MRI-T1 data. NeuroImage 12:726–738
    • (2000) NeuroImage , vol.12 , pp. 726-738
    • Stokking, R.1    Vinchen, K.L.2    Viergever, M.A.3
  • 26
    • 0026608593 scopus 로고
    • Interactive 3D segmentation of MRI and CT volumes using morphological operations
    • Hohne KH, Hanson WA (1992) Interactive 3D segmentation of MRI and CT volumes using morphological operations. J Comput Assist Tomogr 16:285–294
    • (1992) J Comput Assist Tomogr , vol.16 , pp. 285-294
    • Hohne, K.H.1    Hanson, W.A.2
  • 27
    • 85018100692 scopus 로고    scopus 로고
    • A novel implementation of watershed transform using multi-degree immersion simulation. In: 27th Annual international conference of the engineering in medicine and biology society
    • Peng S, Gu L (2006) A novel implementation of watershed transform using multi-degree immersion simulation. In: 27th Annual international conference of the engineering in medicine and biology society. pp 1754–1757
    • (2006) pp 1754–1757
    • Peng, S.1    Gu, L.2
  • 28
  • 30
    • 33748123943 scopus 로고    scopus 로고
    • Constrained Gaussian mixture model framework for automatic segmentation of MR brain images
    • Greenspan H, Ruf A, Goldberger J (2006) Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans Med Imag 25:1233–1245
    • (2006) IEEE Trans Med Imag , vol.25 , pp. 1233-1245
    • Greenspan, H.1    Ruf, A.2    Goldberger, J.3
  • 31
  • 32
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images
    • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell PAMI 6:721–741
    • (1984) IEEE Trans Pattern Anal Mach Intell PAMI , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 33
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the Expectation–Maximization algorithm
    • Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the Expectation–Maximization algorithm. IEEE Trans Med Imag 20:45–57
    • (2001) IEEE Trans Med Imag , vol.20 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 34
    • 79951747269 scopus 로고    scopus 로고
    • Yousefi S, Zahedi M, Azmi R (2010), 3D MRI brain segmentation based on MRF and hybrid of SA and IGA. In: 17th Iranian conference of, biomedical engineering. pp 1–4
    • Yousefi S, Zahedi M, Azmi R (2010), 3D MRI brain segmentation based on MRF and hybrid of SA and IGA. In: 17th Iranian conference of, biomedical engineering. pp 1–4
  • 36
    • 33846363900 scopus 로고    scopus 로고
    • Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI
    • Zhou Y, Bai J (2007) Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI. IEEE Trans Biomed Eng 54:122–129
    • (2007) IEEE Trans Biomed Eng , vol.54 , pp. 122-129
    • Zhou, Y.1    Bai, J.2
  • 37
    • 80051660022 scopus 로고    scopus 로고
    • An atlas-based deep brain structure segmentation method: from coarse positioning to fine shaping. In: IEEE International conference on acoustics, speech and signal processing
    • Luo Y, Chung ACS (2011) An atlas-based deep brain structure segmentation method: from coarse positioning to fine shaping. In: IEEE International conference on acoustics, speech and signal processing. pp 1085–1088
    • (2011) pp 1085–1088
    • Luo, Y.1    Chung, A.C.S.2
  • 39
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift : a robust approach toward feature space analysis
    • Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619
    • (2002) IEEE Trans Pattern Anal Mach Intell , vol.24 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 40
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Fifth Berkeley Symp Math Stat Prob 1:281–297
    • (1967) Fifth Berkeley Symp Math Stat Prob , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 42
    • 25844489923 scopus 로고    scopus 로고
    • MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization
    • Shen S, Sandham W, Granat M, Sterr A (2005) MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans Inf technol Biomed 9:459–467
    • (2005) IEEE Trans Inf technol Biomed , vol.9 , pp. 459-467
    • Shen, S.1    Sandham, W.2    Granat, M.3    Sterr, A.4
  • 43
    • 68249111619 scopus 로고    scopus 로고
    • An adaptive mean-shift framework for MRI brain segmentation
    • Mayer A, Greenspan H (2009) An adaptive mean-shift framework for MRI brain segmentation. IEEE Trans Med Imag 28:1238–1250
    • (2009) IEEE Trans Med Imag , vol.28 , pp. 1238-1250
    • Mayer, A.1    Greenspan, H.2
  • 46
    • 36349008677 scopus 로고    scopus 로고
    • Lesion detection in noisy MR brain images using constrained GMM and active contours. In: 4th IEEE international symposium on biomedical imaging: from Nano to Macro
    • Freifeld O, Greenspan H, Goldberger J (2007) Lesion detection in noisy MR brain images using constrained GMM and active contours. In: 4th IEEE international symposium on biomedical imaging: from Nano to Macro. pp 596–599
    • (2007) pp 596–599
    • Freifeld, O.1    Greenspan, H.2    Goldberger, J.3
  • 48
    • 17144380094 scopus 로고    scopus 로고
    • Combining fuzzy logic and level set methods for 3D MRI brain segmentation
    • Ciofolo C, Barillot C, Hellier P (2004) Combining fuzzy logic and level set methods for 3D MRI brain segmentation. IEEE Intern Symp Biomed Imag 1:161–164
    • (2004) IEEE Intern Symp Biomed Imag , vol.1 , pp. 161-164
    • Ciofolo, C.1    Barillot, C.2    Hellier, P.3
  • 50
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 51
    • 77954475540 scopus 로고    scopus 로고
    • Automatic MRI brain segmentation using local features, self-organizing maps, and watershed. In: IEEE International conference on signal and image processing applications
    • Emambakhsh M, Sedaaghi MH (2009) Automatic MRI brain segmentation using local features, self-organizing maps, and watershed. In: IEEE International conference on signal and image processing applications. pp 123–128
    • (2009) pp 123–128
    • Emambakhsh, M.1    Sedaaghi, M.H.2
  • 52
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69
    • (1982) Biol Cybern , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 53
    • 84858698042 scopus 로고    scopus 로고
    • A new method based on the CLM of the LV RNN for brain MR image segmentation
    • Zheng B, Yi Z (2012) A new method based on the CLM of the LV RNN for brain MR image segmentation. Digit Signal Process 22:497–505
    • (2012) Digit Signal Process , vol.22 , pp. 497-505
    • Zheng, B.1    Yi, Z.2
  • 54
    • 0013221531 scopus 로고
    • A spatial approach for feature linking
    • Retter H (1990) A spatial approach for feature linking. Intern Neural Netw Conf 2:898–901
    • (1990) Intern Neural Netw Conf , vol.2 , pp. 898-901
    • Retter, H.1
  • 56
    • 78049502690 scopus 로고    scopus 로고
    • Atlas-based segmentation of brain MR images using least square support vector machines. In: 2nd International conference on image processing theory tools and applications
    • Kasiri K, Kazemi K, Dehghani MJ, Helfroush MS (2010) Atlas-based segmentation of brain MR images using least square support vector machines. In: 2nd International conference on image processing theory tools and applications. pp 306–310
    • (2010) pp 306–310
    • Kasiri, K.1    Kazemi, K.2    Dehghani, M.J.3    Helfroush, M.S.4
  • 58
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Freund Y, Schapire R (1997) A decision-theoretic generalization of online learning and an application to boosting. J Comput Syst Sci 55:119–139
    • (1997) J Comput Syst Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 59
    • 33846925673 scopus 로고    scopus 로고
    • Adaboost and support vector machines for white matter lesion segmentation in MR Images. In: 27th Annual international conference of the engineering in medicine and biology society
    • Quddus A, Fieguth P, Basir O (2005) Adaboost and support vector machines for white matter lesion segmentation in MR Images. In: 27th Annual international conference of the engineering in medicine and biology society. pp 463–466
    • (2005) pp 463–466
    • Quddus, A.1    Fieguth, P.2    Basir, O.3
  • 60
    • 47349125337 scopus 로고    scopus 로고
    • Statistical structure analysis in MRI brain tumor segmentation. In: Fourth international conference on image and graphics
    • Xuan X, Liao Q (2007) Statistical structure analysis in MRI brain tumor segmentation. In: Fourth international conference on image and graphics. pp 421–426
    • (2007) pp 421–426
    • Xuan, X.1    Liao, Q.2
  • 61
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 45:5–32
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 62
    • 56449089785 scopus 로고    scopus 로고
    • An empirical evaluation of supervised learning in high dimensions. In: 25th international conference on machine learning
    • Caruana R, Karampatziakis N, Yassenalina A (2008) An empirical evaluation of supervised learning in high dimensions. In: 25th international conference on machine learning. pp 96–103
    • (2008) pp 96–103
    • Caruana, R.1    Karampatziakis, N.2    Yassenalina, A.3
  • 64
    • 0036828879 scopus 로고    scopus 로고
    • Fast robust automated brain extraction
    • Smith S (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155
    • (2002) Hum Brain Mapp , vol.17 , pp. 143-155
    • Smith, S.1
  • 67
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition : the wavelet representation
    • Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693
    • (1989) IEEE Trans Pattern Anal Mach Intell , vol.11 , pp. 674-693
    • Mallat, S.G.1
  • 68
    • 79151470301 scopus 로고    scopus 로고
    • Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation
    • Demirhan A, Güler İ (2011) Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation. Eng Appl Artif Intell 24:358–367
    • (2011) Eng Appl Artif Intell , vol.24 , pp. 358-367
    • Demirhan, A.1    Güler, İ.2
  • 69
    • 0001259658 scopus 로고
    • The stationary wavelet transform and some statistical applications
    • Nason GP, Silverman BW (1995) The stationary wavelet transform and some statistical applications. Wavelets Stat 103:281–299
    • (1995) Wavelets Stat , vol.103 , pp. 281-299
    • Nason, G.P.1    Silverman, B.W.2
  • 72
    • 84941999899 scopus 로고    scopus 로고
    • Center for Morphometric Analysis (2012) Internet brain segmentation repository. Accessed June 2012
    • Center for Morphometric Analysis (2012) Internet brain segmentation repository. http://www.cma.mgh.harvard.edu/ibsr/. Accessed June 2012
  • 75
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 78
    • 0002322469 scopus 로고
    • On a test of whether one of two random variables is stochastically larger than the other
    • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:1–164
    • (1947) Ann Math Stat , vol.18 , pp. 1-164
    • Mann, H.B.1    Whitney, D.R.2
  • 79
    • 84943709252 scopus 로고
    • Use of ranks in one-criterion variance analysis
    • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621
    • (1952) J Am Stat Assoc , vol.47 , pp. 583-621
    • Kruskal, W.H.1    Wallis, W.A.2
  • 81
    • 33244489131 scopus 로고    scopus 로고
    • The Bhattacharyya space for feature selection and its application to texture segmentation
    • Reyes-Aldasoro CC, Bhalerao A (2006) The Bhattacharyya space for feature selection and its application to texture segmentation. Pattern Recogn 39:812–826
    • (2006) Pattern Recogn , vol.39 , pp. 812-826
    • Reyes-Aldasoro, C.C.1    Bhalerao, A.2
  • 82
    • 77953619445 scopus 로고    scopus 로고
    • Application-independent feature selection for texture classification
    • Puig D, Garcia MA, Melendez J (2010) Application-independent feature selection for texture classification. Pattern Recogn 43:3282–3297
    • (2010) Pattern Recogn , vol.43 , pp. 3282-3297
    • Puig, D.1    Garcia, M.A.2    Melendez, J.3
  • 83
    • 77953325111 scopus 로고    scopus 로고
    • Textural feature selection by joint mutual information based on Gaussian mixture model for multispectral image classification
    • Ait Kerroum M, Hammouch A, Aboutajdine D (2010) Textural feature selection by joint mutual information based on Gaussian mixture model for multispectral image classification. Pattern Recogn Lett 31:1168–1174
    • (2010) Pattern Recogn Lett , vol.31 , pp. 1168-1174
    • Ait Kerroum, M.1    Hammouch, A.2    Aboutajdine, D.3
  • 85
    • 84888050597 scopus 로고    scopus 로고
    • 3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets
    • Jiang J, Wu Y, Huang M, Yang W, Chen W, Feng Q (2013) 3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets. Comput Med Imaging Graph 37:512–521
    • (2013) Comput Med Imaging Graph , vol.37 , pp. 512-521
    • Jiang, J.1    Wu, Y.2    Huang, M.3    Yang, W.4    Chen, W.5    Feng, Q.6
  • 86
    • 84888070479 scopus 로고    scopus 로고
    • Level set method with automatic selective local statistics for brain tumor segmentation in MR images
    • Thapaliya K, Pyun JY, Park CS, Kwon GR (2013) Level set method with automatic selective local statistics for brain tumor segmentation in MR images. Comput Med Imaging Graph 37:522–537
    • (2013) Comput Med Imaging Graph , vol.37 , pp. 522-537
    • Thapaliya, K.1    Pyun, J.Y.2    Park, C.S.3    Kwon, G.R.4
  • 87
    • 84874834481 scopus 로고    scopus 로고
    • Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images
    • Bian W, Hess CP, Chang SM, Nelson SJ, Lupo JM (2013) Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images. NeuroImage Clin 2:282–290
    • (2013) NeuroImage Clin , vol.2 , pp. 282-290
    • Bian, W.1    Hess, C.P.2    Chang, S.M.3    Nelson, S.J.4    Lupo, J.M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.