메뉴 건너뛰기




Volumn , Issue , 2010, Pages

3D MRI brain segmentation based on MRF and hybrid of SA and IGA

Author keywords

Improved genetic algorithm; Magnetic resonance imaging; Markov Random Field (MRF); Simulated anealing

Indexed keywords

BRAIN SEGMENTATION; COMPUTATION BURDEN; COMPUTATION COMPLEXITY; CONVERGENCE SPEED; DE-NOISING; GLOBAL OPTIMIZATION PROBLEMS; HILL CLIMBING; IMPROVED GENETIC ALGORITHMS; LOCAL CHARACTERISTICS; MAGNETIC RESONANCE IMAGES; MARKOV RANDOM FIELD; MARKOV RANDOM FIELD (MRF); SEARCH PROCEDURES; SIMULATED ANEALING; SOLUTION QUALITY; STOCHASTIC RELAXATION;

EID: 79951747269     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICBME.2010.5704956     Document Type: Conference Paper
Times cited : (7)

References (19)
  • 1
    • 0027637718 scopus 로고
    • Accurate combination of CT and MR data of the head: Validation and applications in surgical and therapy planning
    • DOI 10.1016/0895-6111(93)90029-M
    • D. L. G. Hill, D. J. Hawkes, Z. Hussain, S. E. M. Green, C. F. Ruff, and G.P. Robinson, "Accurate combination of CT and MR data of the head: Validation and applications in surgical and therapy planning," Computerized Med. Imag. Graph., vol. 17, no. 4/5, pp. 357-363, July-Oct. 1993. (Pubitemid 23337454)
    • (1993) Computerized Medical Imaging and Graphics , vol.17 , Issue.4-5 , pp. 357-363
    • Hill, D.L.G.1    Hawkes, D.J.2    Hussain, Z.3    Green, S.E.M.4    Ruff, C.F.5    Robinson, G.P.6
  • 3
    • 0025190539 scopus 로고
    • Three-dimensional magnetic resonance images of the brain: Application to neurosurgical planning
    • X. P. Hu, K. K. Tan, D. N. Levin, S. Galhotra, J. F. Mullan, J. Hekmatpanah, and J. P. Spire, "Three-dimensional magnetic resonance images of the brain: Application to neurosurgical planning," J. Neurosurgry, vol. 72, no. 3, pp. 433-440, 1990. (Pubitemid 20072967)
    • (1990) Journal of Neurosurgery , vol.72 , Issue.3 , pp. 433-440
    • Hu, X.1    Tan, K.K.2    Levin, D.N.3    Galhotra, S.4    Mullan, J.F.5    Hekmatpanah, J.6    Spire, J.-P.7
  • 4
    • 0024397465 scopus 로고
    • Segmentation of MR brain images into cerebrospinal fluid spaces, white and gray matter
    • K. O. Lim and A. Pfefferbaum, "Segmentation of MR brain images into cerebrospinal fluid spaces, white and gray matter," J. Comput. Assist. Tomography., vol. 13, no. 4, pp. 588-593, 1989. (Pubitemid 19183900)
    • (1989) Journal of Computer Assisted Tomography , vol.13 , Issue.4 , pp. 588-593
    • Lim, K.O.1    Pfefferbaum, A.2
  • 5
    • 0027001622 scopus 로고
    • Optimized intensity thresholds for volumetric analysis of magnetic resonance imaging data
    • M. E. Brummer, "Optimized intensity thresholds for volumetric analysis of magnetic resonance imaging data," Proc. SPIE, vol. 1808, pp. 299-310, 1992.
    • (1992) Proc. SPIE , vol.1808 , pp. 299-310
    • Brummer, M.E.1
  • 7
    • 0023619152 scopus 로고
    • 3D reconstruction of the brain from magnetic resonance images using a connectivity algorithm
    • DOI 10.1016/0730-725X(87)90124-X
    • H. E. Cline, C. L. Dumoulin, H. R. Hart, W. E. Lorensen, and S. Ludke, "3D reconstruction of the brain from magnetic resonance images using a connectivity algorithm", J. Magnetic Resonance Imag., vol. 5, pp. 345-352, 1987. (Pubitemid 17167623)
    • (1987) Magnetic Resonance Imaging , vol.5 , Issue.5 , pp. 345-352
    • Cline, H.E.1    Dumoulin, C.L.2    Hart Jr., H.R.3    Lorensen, W.E.4    Ludke, S.5
  • 10
    • 3843050224 scopus 로고    scopus 로고
    • Baltic sea ice SAR segmentation and classification using modified pulse coupled neural networks
    • J. A. Karvonen, "Baltic Sea ice SAR segmentation and classification using modified pulse coupled neural networks", IEEE Trans. Geosci. Remote Sens., vol. 42, pp. 1566-1574, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , pp. 1566-1574
    • Karvonen, J.A.1
  • 11
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • DOI 10.1109/42.906424, PII S027800620100800X
    • Y. Zhang, M. Brady, and S. Smith, "Segmentation of Brain MR Images through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm," IEEE Trans Med. Imag., vol. 20, pp. 45-57, 2001. (Pubitemid 32293419)
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 12
    • 0033874010 scopus 로고    scopus 로고
    • Unsupervised image segmentation using Markov random field models
    • DOI 10.1016/S0031-3203(99)00074-6
    • S. A. Barker and P. J. W. Rayner, "Unsupervised image segmentation using Markov random field models," J. Pattern Recognition, vol. 33, pp. 587-602, 2000. (Pubitemid 30553111)
    • (2000) Pattern Recognition , vol.33 , Issue.4 , pp. 587-602
    • Barker, S.A.1    Rayner, P.J.W.2
  • 13
    • 11844291330 scopus 로고    scopus 로고
    • Evolutionary optimization in Markov random field modeling
    • X. Wang, H. Wang, "Evolutionary Optimization in Markov Random Field Modeling," IEEE Trans. Evol. Comput, vol. 8, no. 6, pp. 567-579, 2003.
    • (2003) IEEE Trans. Evol. Comput , vol.8 , Issue.6 , pp. 567-579
    • Wang, X.1    Wang, H.2
  • 14
    • 0034321706 scopus 로고    scopus 로고
    • A genetic algorithm-based segmentation of Markov random field modeled images
    • E. Y. Kim, S. H. Park, and H. J. Kim, "A Genetic Algorithm-Based Segmentation of Markov Random Field Modeled Images," IEEE Trans. Signal Process. Lett., vol. 7, pp. 301-304, 2000.
    • (2000) IEEE Trans. Signal Process. Lett. , vol.7 , pp. 301-304
    • Kim, E.Y.1    Park, S.H.2    Kim, H.J.3
  • 15
    • 79551653309 scopus 로고    scopus 로고
    • Application of an improved genetic algorithm in image segmentation
    • H. Lei, S. Cheng, and M. S. Ao, "Application of an improved Genetic Algorithm in image segmentation," Int. Conf. Comput. Sci and Software Eng., vol. 3, pp. 898-901, 2008.
    • (2008) Int. Conf. Comput. Sci and Software Eng. , vol.3 , pp. 898-901
    • Lei, H.1    Cheng, S.2    Ao, M.S.3
  • 17
    • 0028203106 scopus 로고
    • Convergence analysis of canonical genetic algorithms
    • G. Rudolph, "Convergence analysis of canonical genetic algorithms," IEEE Trans. Neural Netw., vol. 5, no. 1, pp. 96-101, 1995.
    • (1995) IEEE Trans. Neural Netw. , vol.5 , Issue.1 , pp. 96-101
    • Rudolph, G.1
  • 18
    • 0842348111 scopus 로고    scopus 로고
    • A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models
    • Berkeley, California, Apr.
    • J. A. Bilmes, "A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models," Int. Comput. Sci. Inst., Berkeley, California, Apr. 1998.
    • (1998) Int. Comput. Sci. Inst.
    • Bilmes, J.A.1
  • 19
    • 70449922668 scopus 로고    scopus 로고
    • Improved crossover and mutation operators for genetic-algorithm project scheduling
    • May
    • M. A. Abido and A. Elazouni, "Improved Crossover and Mutation Operators for Genetic-Algorithm Project Scheduling," IEEE Congr. Evol. Computation, pp. 1865-1872, May 2009.
    • (2009) IEEE Congr. Evol. Computation , pp. 1865-1872
    • Abido, M.A.1    Elazouni, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.