-
1
-
-
0016355478
-
A new look at the statistical model identification
-
H. Akaike A new look at the statistical model identification IEEE Transactions on Automatic Control 19 6 1974 716 723
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
4
-
-
79551613968
-
1-penalized quantile regression in high-dimensional sparse models
-
1-penalized quantile regression in high-dimensional sparse models The Annals of Statistics 39 2011 82 130
-
(2011)
The Annals of Statistics
, vol.39
, pp. 82-130
-
-
Belloni, A.1
Chernozhukov, V.2
-
5
-
-
39849102639
-
Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR
-
DOI 10.1111/j.1541-0420.2007.00843.x
-
H. Bondell, and B. Reich Simultaneous regression shrinkage, variable selection and clustering of predictors with OSCAR Biometrics 64 2008 115 123 (Pubitemid 351316873)
-
(2008)
Biometrics
, vol.64
, Issue.1
, pp. 115-123
-
-
Bondell, H.D.1
Reich, B.J.2
-
6
-
-
78651310251
-
Non-crossing quantile regression curve estimation
-
H. Bondell, B. Reich, and H. Wang Non-crossing quantile regression curve estimation Biometrika 97 2010 825 838
-
(2010)
Biometrika
, vol.97
, pp. 825-838
-
-
Bondell, H.1
Reich, B.2
Wang, H.3
-
8
-
-
34548275795
-
The dantzig selector: Statistical estimation when p is much larger than n
-
E. Candes, and T. Tao The dantzig selector: statistical estimation when p is much larger than n The Annals of Statistics 35 2007 2313 2351
-
(2007)
The Annals of Statistics
, vol.35
, pp. 2313-2351
-
-
Candes, E.1
Tao, T.2
-
9
-
-
3242708140
-
Least angle regression
-
DOI 10.1214/009053604000000067
-
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani Least angle regression The Annals of Statistics 32 2004 407 499 (Pubitemid 41250302)
-
(2004)
Annals of Statistics
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
Ishwaran, H.5
Knight, K.6
Loubes, J.-M.7
Massart, P.8
Madigan, D.9
Ridgeway, G.10
Rosset, S.11
Zhu, J.I.12
Stine, R.A.13
Turlach, B.A.14
Weisberg, S.15
Hastie, T.16
Johnstone, I.17
Tibshirani, R.18
-
10
-
-
1542784498
-
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
-
J. Fan, and R. Li Variable selection via nonconcave penalized likelihood and its oracle properties Journal of the American Statistical Association 96 2001 1348 1360 (Pubitemid 33695585)
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.456
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
11
-
-
84883676972
-
Variable selection in nonparametric additive models
-
J. Huang, L. Horowitz, and F. Wei Variable selection in nonparametric additive models The Annals of Statistics 37 2010 3779 3821
-
(2010)
The Annals of Statistics
, vol.37
, pp. 3779-3821
-
-
Huang, J.1
Horowitz, L.2
Wei, F.3
-
12
-
-
84866848420
-
Oracle model selection for nonlinear models based on weighted composite quantile regression
-
X. Jiang, J. Jiang, and X. Song Oracle model selection for nonlinear models based on weighted composite quantile regression Statistica Sinica 22 2012 1479 1506
-
(2012)
Statistica Sinica
, vol.22
, pp. 1479-1506
-
-
Jiang, X.1
Jiang, J.2
Song, X.3
-
14
-
-
84925105967
-
-
Cambridge University Press Cambridge
-
R. Koenker Quantile Regression 2005 Cambridge University Press Cambridge
-
(2005)
Quantile Regression
-
-
Koenker, R.1
-
17
-
-
34548800295
-
Analysis of array CGH data for cancer studies using fused quantile regression
-
DOI 10.1093/bioinformatics/btm364
-
Y. Li, and J. Zhu Analysis of array CGH data for cancer studies using fused quantile regression Bioinformatics 23 2007 2470 2476 (Pubitemid 47423846)
-
(2007)
Bioinformatics
, vol.23
, Issue.18
, pp. 2470-2476
-
-
Li, Y.1
Zhu, J.2
-
21
-
-
84971936861
-
Asymptotics for least absolute deviation regression estimators
-
D. Pollard Asymptotics for least absolute deviation regression estimators Econometric Theory 7 1991 186 199
-
(1991)
Econometric Theory
, vol.7
, pp. 186-199
-
-
Pollard, D.1
-
22
-
-
70350092487
-
Sparse additive models
-
P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman Sparse additive models Journal of the Royal Statistical Society, Series B 71 2009 1009 1030
-
(2009)
Journal of the Royal Statistical Society, Series B
, vol.71
, pp. 1009-1030
-
-
Ravikumar, P.1
Lafferty, J.2
Liu, H.3
Wasserman, L.4
-
23
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz Estimating the dimension of a model The Annals of Statistics 6 1978 461 464
-
(1978)
The Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
25
-
-
12844266177
-
Sparsity and smoothness via the fused lasso
-
DOI 10.1111/j.1467-9868.2005.00490.x
-
R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight Sparsity and smoothness via the fused Lasso Journal of the Royal Statistical Society, Series B 67 2005 91 108 (Pubitemid 40167043)
-
(2005)
Journal of the Royal Statistical Society. Series B: Statistical Methodology
, vol.67
, Issue.1
, pp. 91-108
-
-
Tibshirani, R.1
Saunders, M.2
Rosset, S.3
Zhu, J.4
Knight, K.5
-
26
-
-
70349263515
-
Inference on quantile regression for heteroscedastic mixed models
-
H. Wang Inference on quantile regression for heteroscedastic mixed models Statistica Sinica 19 2009 1247 1261
-
(2009)
Statistica Sinica
, vol.19
, pp. 1247-1261
-
-
Wang, H.1
-
27
-
-
79959343931
-
Identification of differential aberrations in multiple-sample array CGH studies
-
H. Wang, and J. Hu Identification of differential aberrations in multiple-sample array CGH studies Biometrics 67 2011 353 362
-
(2011)
Biometrics
, vol.67
, pp. 353-362
-
-
Wang, H.1
Hu, J.2
-
28
-
-
84883721624
-
Variable selection for censored quantile regression
-
H. Wang, J. Zhou, and Y. Li Variable selection for censored quantile regression Statistica Sinica 23 2013 145 167
-
(2013)
Statistica Sinica
, vol.23
, pp. 145-167
-
-
Wang, H.1
Zhou, J.2
Li, Y.3
-
29
-
-
68149091660
-
Variable selection in quantile regression
-
Y. Wu, and Y. Liu Variable selection in quantile regression Statistica Sinica 19 2009 801 817
-
(2009)
Statistica Sinica
, vol.19
, pp. 801-817
-
-
Wu, Y.1
Liu, Y.2
-
30
-
-
15044342852
-
Quantile regression models with multivariate failure time data
-
DOI 10.1111/j.0006-341X.2005.030815.x
-
G.S. Yin, and J. Cai Quantile regression models with multivariate failure time data Biometrics 61 2005 151 161 (Pubitemid 40380974)
-
(2005)
Biometrics
, vol.61
, Issue.1
, pp. 151-161
-
-
Yin, G.1
Cai, J.2
-
34
-
-
51049119407
-
Composite quantile regression and the oracle model selection theory
-
H. Zou, and M. Yuan Composite quantile regression and the oracle model selection theory The Annals of Statistics 36 2008 1108 1126
-
(2008)
The Annals of Statistics
, vol.36
, pp. 1108-1126
-
-
Zou, H.1
Yuan, M.2
-
35
-
-
47749088574
-
Regularized simultaneous model selection in multiple quantiles regression
-
H. Zou, and M. Yuan Regularized simultaneous model selection in multiple quantiles regression Computational Statistics and Data Analysis 52 2008 5296 5304
-
(2008)
Computational Statistics and Data Analysis
, vol.52
, pp. 5296-5304
-
-
Zou, H.1
Yuan, M.2
|