메뉴 건너뛰기




Volumn 69, Issue , 2014, Pages 208-219

Interquantile shrinkage and variable selection in quantile regression

Author keywords

Fused adaptive Lasso; Fused adaptive sup norm; Oracle; Quantile regression; Smoothing; Variable selection

Indexed keywords

ADAPTIVE LASSOS; FUSED ADAPTIVE SUP-NORM; ORACLE; QUANTILE REGRESSION; SMOOTHING; VARIABLE SELECTION;

EID: 84883715312     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2013.08.006     Document Type: Article
Times cited : (39)

References (35)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike A new look at the statistical model identification IEEE Transactions on Automatic Control 19 6 1974 716 723
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 4
    • 79551613968 scopus 로고    scopus 로고
    • 1-penalized quantile regression in high-dimensional sparse models
    • 1-penalized quantile regression in high-dimensional sparse models The Annals of Statistics 39 2011 82 130
    • (2011) The Annals of Statistics , vol.39 , pp. 82-130
    • Belloni, A.1    Chernozhukov, V.2
  • 5
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR
    • DOI 10.1111/j.1541-0420.2007.00843.x
    • H. Bondell, and B. Reich Simultaneous regression shrinkage, variable selection and clustering of predictors with OSCAR Biometrics 64 2008 115 123 (Pubitemid 351316873)
    • (2008) Biometrics , vol.64 , Issue.1 , pp. 115-123
    • Bondell, H.D.1    Reich, B.J.2
  • 6
    • 78651310251 scopus 로고    scopus 로고
    • Non-crossing quantile regression curve estimation
    • H. Bondell, B. Reich, and H. Wang Non-crossing quantile regression curve estimation Biometrika 97 2010 825 838
    • (2010) Biometrika , vol.97 , pp. 825-838
    • Bondell, H.1    Reich, B.2    Wang, H.3
  • 8
    • 34548275795 scopus 로고    scopus 로고
    • The dantzig selector: Statistical estimation when p is much larger than n
    • E. Candes, and T. Tao The dantzig selector: statistical estimation when p is much larger than n The Annals of Statistics 35 2007 2313 2351
    • (2007) The Annals of Statistics , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 10
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
    • J. Fan, and R. Li Variable selection via nonconcave penalized likelihood and its oracle properties Journal of the American Statistical Association 96 2001 1348 1360 (Pubitemid 33695585)
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 11
    • 84883676972 scopus 로고    scopus 로고
    • Variable selection in nonparametric additive models
    • J. Huang, L. Horowitz, and F. Wei Variable selection in nonparametric additive models The Annals of Statistics 37 2010 3779 3821
    • (2010) The Annals of Statistics , vol.37 , pp. 3779-3821
    • Huang, J.1    Horowitz, L.2    Wei, F.3
  • 12
    • 84866848420 scopus 로고    scopus 로고
    • Oracle model selection for nonlinear models based on weighted composite quantile regression
    • X. Jiang, J. Jiang, and X. Song Oracle model selection for nonlinear models based on weighted composite quantile regression Statistica Sinica 22 2012 1479 1506
    • (2012) Statistica Sinica , vol.22 , pp. 1479-1506
    • Jiang, X.1    Jiang, J.2    Song, X.3
  • 14
    • 84925105967 scopus 로고    scopus 로고
    • Cambridge University Press Cambridge
    • R. Koenker Quantile Regression 2005 Cambridge University Press Cambridge
    • (2005) Quantile Regression
    • Koenker, R.1
  • 16
    • 0442278021 scopus 로고    scopus 로고
    • Goodness of fit and related inference processes for quantile regression
    • R. Koenker, and J. Machado Goodness of fit and related inference processes for quantile regression Journal of the American Statistical Association 94 1999 1296 1310
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1296-1310
    • Koenker, R.1    Machado, J.2
  • 17
    • 34548800295 scopus 로고    scopus 로고
    • Analysis of array CGH data for cancer studies using fused quantile regression
    • DOI 10.1093/bioinformatics/btm364
    • Y. Li, and J. Zhu Analysis of array CGH data for cancer studies using fused quantile regression Bioinformatics 23 2007 2470 2476 (Pubitemid 47423846)
    • (2007) Bioinformatics , vol.23 , Issue.18 , pp. 2470-2476
    • Li, Y.1    Zhu, J.2
  • 21
    • 84971936861 scopus 로고
    • Asymptotics for least absolute deviation regression estimators
    • D. Pollard Asymptotics for least absolute deviation regression estimators Econometric Theory 7 1991 186 199
    • (1991) Econometric Theory , vol.7 , pp. 186-199
    • Pollard, D.1
  • 23
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz Estimating the dimension of a model The Annals of Statistics 6 1978 461 464
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 26
    • 70349263515 scopus 로고    scopus 로고
    • Inference on quantile regression for heteroscedastic mixed models
    • H. Wang Inference on quantile regression for heteroscedastic mixed models Statistica Sinica 19 2009 1247 1261
    • (2009) Statistica Sinica , vol.19 , pp. 1247-1261
    • Wang, H.1
  • 27
    • 79959343931 scopus 로고    scopus 로고
    • Identification of differential aberrations in multiple-sample array CGH studies
    • H. Wang, and J. Hu Identification of differential aberrations in multiple-sample array CGH studies Biometrics 67 2011 353 362
    • (2011) Biometrics , vol.67 , pp. 353-362
    • Wang, H.1    Hu, J.2
  • 28
    • 84883721624 scopus 로고    scopus 로고
    • Variable selection for censored quantile regression
    • H. Wang, J. Zhou, and Y. Li Variable selection for censored quantile regression Statistica Sinica 23 2013 145 167
    • (2013) Statistica Sinica , vol.23 , pp. 145-167
    • Wang, H.1    Zhou, J.2    Li, Y.3
  • 29
    • 68149091660 scopus 로고    scopus 로고
    • Variable selection in quantile regression
    • Y. Wu, and Y. Liu Variable selection in quantile regression Statistica Sinica 19 2009 801 817
    • (2009) Statistica Sinica , vol.19 , pp. 801-817
    • Wu, Y.1    Liu, Y.2
  • 30
    • 15044342852 scopus 로고    scopus 로고
    • Quantile regression models with multivariate failure time data
    • DOI 10.1111/j.0006-341X.2005.030815.x
    • G.S. Yin, and J. Cai Quantile regression models with multivariate failure time data Biometrics 61 2005 151 161 (Pubitemid 40380974)
    • (2005) Biometrics , vol.61 , Issue.1 , pp. 151-161
    • Yin, G.1    Cai, J.2
  • 34
    • 51049119407 scopus 로고    scopus 로고
    • Composite quantile regression and the oracle model selection theory
    • H. Zou, and M. Yuan Composite quantile regression and the oracle model selection theory The Annals of Statistics 36 2008 1108 1126
    • (2008) The Annals of Statistics , vol.36 , pp. 1108-1126
    • Zou, H.1    Yuan, M.2
  • 35
    • 47749088574 scopus 로고    scopus 로고
    • Regularized simultaneous model selection in multiple quantiles regression
    • H. Zou, and M. Yuan Regularized simultaneous model selection in multiple quantiles regression Computational Statistics and Data Analysis 52 2008 5296 5304
    • (2008) Computational Statistics and Data Analysis , vol.52 , pp. 5296-5304
    • Zou, H.1    Yuan, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.