메뉴 건너뛰기




Volumn 1, Issue , 2014, Pages 447-464

Dynamic treatment regimes

Author keywords

Dynamic treatment regime; Nonregularity; Q learning; Reinforcement learning; Sequential randomization

Indexed keywords


EID: 84906077445     PISSN: 23268298     EISSN: 2326831X     Source Type: Journal    
DOI: 10.1146/annurev-statistics-022513-115553     Document Type: Article
Times cited : (200)

References (82)
  • 1
    • 79952332684 scopus 로고    scopus 로고
    • Feedback control of HIV antiviral therapy with long measurement time
    • Banks H, Jang T, Kwon H. 2011. Feedback control of HIV antiviral therapy with long measurement time. Int. J. Pure Appl. Math. 66:461-85
    • (2011) Int. J. Pure Appl. Math. , vol.66 , pp. 461-485
    • Banks, H.1    Jang, T.2    Kwon, H.3
  • 2
    • 0003787146 scopus 로고
    • Princeton, NJ: Princeton Univ. Press
    • Bellman R. 1957. Dynamic Programming. Princeton, NJ: Princeton Univ. Press
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 3
    • 84875271177 scopus 로고    scopus 로고
    • Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach
    • Bennett C, Hauser K. 2012. Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach. Artif. Intell. Med. 57:9-19
    • (2012) Artif. Intell. Med. , vol.57 , pp. 9-19
    • Bennett, C.1    Hauser, K.2
  • 4
    • 21844487665 scopus 로고
    • P values maximized over a confidence set for the nuisance parameter
    • Berger R, Boos D. 1994. P values maximized over a confidence set for the nuisance parameter. J. Am. Stat. Assoc. 89:1012-16
    • (1994) J. Am. Stat. Assoc. , vol.89 , pp. 1012-1016
    • Berger, R.1    Boos, D.2
  • 6
    • 79953133534 scopus 로고    scopus 로고
    • Analysis of randomized comparative clinical trial data for personalized treatment selections
    • Cai T, Tian L, Wong P, Wei L. 2011. Analysis of randomized comparative clinical trial data for personalized treatment selections. Biostatistics 12:270-82
    • (2011) Biostatistics , vol.12 , pp. 270-282
    • Cai, T.1    Tian, L.2    Wong, P.3    Wei, L.4
  • 7
    • 84901199092 scopus 로고    scopus 로고
    • Inference for optimal dynamic treatment regimes using an adaptive m-out-of-n bootstrap scheme
    • Chakraborty B, Laber E, Zhao Y. 2013. Inference for optimal dynamic treatment regimes using an adaptive m-out-of-n bootstrap scheme. Biometrics. 69:714-23
    • (2013) Biometrics , vol.69 , pp. 714-723
    • Chakraborty, B.1    Laber, E.2    Zhao, Y.3
  • 8
    • 77954420461 scopus 로고    scopus 로고
    • Inference for non-regular parameters in optimal dynamic treatment regimes
    • Chakraborty B, Murphy S, Strecher V. 2010. Inference for non-regular parameters in optimal dynamic treatment regimes. Stat. Methods Med. Res. 19:317-43
    • (2010) Stat. Methods Med. Res. , vol.19 , pp. 317-343
    • Chakraborty, B.1    Murphy, S.2    Strecher, V.3
  • 9
    • 84871838300 scopus 로고    scopus 로고
    • Overview, hurdles, and future work in adaptive designs: Perspectives from an NIH-funded workshop
    • Coffey C, Levin B, Clark C, Timmerman C, Wittes J, et al. 2012. Overview, hurdles, and future work in adaptive designs: perspectives from an NIH-funded workshop. Clin. Trials 9:671-80
    • (2012) Clin. Trials , vol.9 , pp. 671-680
    • Coffey, C.1    Levin, B.2    Clark, C.3    Timmerman, C.4    Wittes, J.5
  • 10
    • 80053051294 scopus 로고    scopus 로고
    • A data augmentation method for estimating the causal effect of adherence to treatment regimens targeting control of an intermediate measure
    • Cotton C, Heagerty P. 2011. A data augmentation method for estimating the causal effect of adherence to treatment regimens targeting control of an intermediate measure. Stat. Biosci. 3:28-44
    • (2011) Stat. Biosci. , vol.3 , pp. 28-44
    • Cotton, C.1    Heagerty, P.2
  • 11
    • 78650346527 scopus 로고    scopus 로고
    • Sample size calculations for evaluating treatment policies in multi-stage designs
    • Dawson R, Lavori P. 2010. Sample size calculations for evaluating treatment policies in multi-stage designs. Clin. Trials 7:643-52
    • (2010) Clin. Trials , vol.7 , pp. 643-652
    • Dawson, R.1    Lavori, P.2
  • 12
    • 83755205368 scopus 로고    scopus 로고
    • Efficient design and inference for multistage randomized trials of individualized treatment policies
    • Dawson R, Lavori P. 2012. Efficient design and inference for multistage randomized trials of individualized treatment policies. Biostatistics 13:142-52
    • (2012) Biostatistics , vol.13 , pp. 142-152
    • Dawson, R.1    Lavori, P.2
  • 14
    • 50949113250 scopus 로고    scopus 로고
    • Supremum weighted log-rank test and sample size for comparing two-stage adaptive treatment strategies
    • Feng W, Wahed A. 2008. Supremum weighted log-rank test and sample size for comparing two-stage adaptive treatment strategies. Biometrika 95:695-707
    • (2008) Biometrika , vol.95 , pp. 695-707
    • Feng, W.1    Wahed, A.2
  • 15
    • 69949095878 scopus 로고    scopus 로고
    • Sample size for two-stage studies with maintenance therapy
    • Feng W, Wahed A. 2009. Sample size for two-stage studies with maintenance therapy. Stat.Med. 28:2028-41
    • (2009) Stat.Med. , vol.28 , pp. 2028-2041
    • Feng, W.1    Wahed, A.2
  • 16
    • 37349025512 scopus 로고    scopus 로고
    • Model predictive control of erythropoietin administration in the anemia of ESRD
    • Gaweda A, Jacobs A, Aronoff G, Brier M. 2008. Model predictive control of erythropoietin administration in the anemia of ESRD. Am. J. Kidney Dis. 51:71-79
    • (2008) Am. J. Kidney Dis. , vol.51 , pp. 71-79
    • Gaweda, A.1    Jacobs, A.2    Aronoff, G.3    Brier, M.4
  • 17
    • 27744484541 scopus 로고    scopus 로고
    • Individualization of pharmacological anemia management using reinforcement learning
    • Gaweda A, Muezzinoglu M, Aronoff G, Jacobs A, Zurada J, Brier M. 2005. Individualization of pharmacological anemia management using reinforcement learning. Neural Netw. 18:826-34
    • (2005) Neural Netw. , vol.18 , pp. 826-834
    • Gaweda, A.1    Muezzinoglu, M.2    Aronoff, G.3    Jacobs, A.4    Zurada, J.5    Brier, M.6
  • 18
    • 84861349230 scopus 로고    scopus 로고
    • Q-learning with censored data
    • Goldberg Y, Kosorok M. 2012. Q-learning with censored data. Ann. Stat. 40:529-60
    • (2012) Ann. Stat. , vol.40 , pp. 529-560
    • Goldberg, Y.1    Kosorok, M.2
  • 20
    • 84876042107 scopus 로고    scopus 로고
    • Estimating treatment effect heterogeneity in randomized program evaluation
    • Imai K, Ratkovicz M. 2013. Estimating treatment effect heterogeneity in randomized program evaluation. Ann. Appl. Stat. 7:443-70
    • (2013) Ann. Appl. Stat. , vol.7 , pp. 443-470
    • Imai, K.1    Ratkovicz, M.2
  • 21
    • 84906883685 scopus 로고    scopus 로고
    • Reinforcement-based treatment for pregnant drug abusers (HOME II )
    • ClinicalTrials.gov database, updated October 19, 2012, accessed July 24, 2013 MD
    • Jones H. 2010. Reinforcement-based treatment for pregnant drug abusers (HOME II ). ClinicalTrials.gov database, updated October 19, 2012, accessed July 24, 2013, Natl. Inst. Health, Bethesda, MD.
    • (2010) Natl. Inst. Health, Bethesda
    • Jones, H.1
  • 22
    • 84906883678 scopus 로고    scopus 로고
    • Developmental and augmented intervention for facilitating expressive language (CCNIA)
    • ClinicalTrials.gov database, updated Apr. 26, 2012, accessed July 24, 2013.MD
    • Kasari C. 2009. Developmental and augmented intervention for facilitating expressive language (CCNIA). ClinicalTrials.gov database, updated Apr. 26, 2012, accessed July 24, 2013. Natl. Inst. Health, Bethesda, MD.
    • (2009) Natl. Inst. Health, Bethesda
    • Kasari, C.1
  • 23
    • 79960466561 scopus 로고    scopus 로고
    • Semi-Markov adaptive critic heuristics with application to airline revenue management
    • Kulkarni K, Gosavi A, Murray S, Grantham K. 2011. Semi-Markov adaptive critic heuristics with application to airline revenue management. J. Control Theory Appl. 9:421-30
    • (2011) J. Control Theory Appl. , vol.9 , pp. 421-430
    • Kulkarni, K.1    Gosavi, A.2    Murray, S.3    Grantham, K.4
  • 24
    • 80054681541 scopus 로고    scopus 로고
    • Adaptive confidence intervals for the test error in classification
    • Laber E, Murphy S. 2011. Adaptive confidence intervals for the test error in classification. J. Am. Stat. Assoc. 106:904-13
    • (2011) J. Am. Stat. Assoc. , vol.106 , pp. 904-913
    • Laber, E.1    Murphy, S.2
  • 25
    • 0034364917 scopus 로고    scopus 로고
    • A design for testing clinical strategies: Biased adaptive within-subject randomization
    • Lavori P, Dawson R. 2000. A design for testing clinical strategies: biased adaptive within-subject randomization. J. R. Stat. Soc. A 163:29-38
    • (2000) J. R. Stat. Soc.A. , vol.163 , pp. 29-38
    • Lavori, P.1    Dawson, R.2
  • 26
    • 85047692405 scopus 로고    scopus 로고
    • Dynamic treatment regimes: Practical design consiDerations
    • Lavori P, Dawson R. 2004. Dynamic treatment regimes: practical design consiDerations. Clin. Trials 1:9-20
    • (2004) Clin. Trials , vol.1 , pp. 9-20
    • Lavori, P.1    Dawson, R.2
  • 27
    • 39649121717 scopus 로고    scopus 로고
    • Adaptive treatment strategies in chronic disease
    • Lavori P, Dawson R. 2008. Adaptive treatment strategies in chronic disease. Annu. Rev. Med. 59:443-53
    • (2008) Annu. Rev. Med. , vol.59 , pp. 443-453
    • Lavori, P.1    Dawson, R.2
  • 28
    • 0037706986 scopus 로고    scopus 로고
    • The finite-sample distribution of post-model-selection estimators and uniform versus nonuniform approximations
    • Leeb H, Pötscher B. 2003. The finite-sample distribution of post-model-selection estimators and uniform versus nonuniform approximations. Econom. Theory 19:100-42
    • (2003) Econom. Theory , vol.19 , pp. 100-142
    • Leeb, H.1    Pötscher, B.2
  • 30
    • 80052282229 scopus 로고    scopus 로고
    • Sample size formulae for two-stage randomized trials with survival outcomes
    • Li Z, Murphy S. 2011. Sample size formulae for two-stage randomized trials with survival outcomes. Biometrika 98:503-18
    • (2011) Biometrika , vol.98 , pp. 503-518
    • Li, Z.1    Murphy, S.2
  • 31
    • 77956522604 scopus 로고    scopus 로고
    • Efficient reinforcement learning with multiple reward functions for randomized clinical trial analysis
    • Haifa, Israel: Omnipress
    • Lizotte D, Bowling M, Murphy S. 2010. Efficient reinforcement learning with multiple reward functions for randomized clinical trial analysis. In Twenty-Seventh International Conference on Machine Learning (ICML), pp. 695-702. Haifa, Israel: Omnipress
    • (2010) Twenty-Seventh International Conference on Machine Learning (ICML) , pp. 695-702
    • Lizotte, D.1    Bowling, M.2    Murphy, S.3
  • 32
    • 84870881620 scopus 로고    scopus 로고
    • Linear fitted-Q iteration with multiple reward functions
    • Lizotte D, Bowling M, Murphy S. 2012. Linear fitted-Q iteration with multiple reward functions. J. Mach. Learn. Res. 13:3253-95
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 3253-3195
    • Lizotte, D.1    Bowling, M.2    Murphy, S.3
  • 33
    • 0036192067 scopus 로고    scopus 로고
    • Estimation of survival distributions of treatment policies in two-stage randomization designs in clinical trials
    • Lunceford J, Davidian M, Tsiatis A. 2002. Estimation of survival distributions of treatment policies in two-stage randomization designs in clinical trials. Biometrics 58:48-57
    • (2002) Biometrics , vol.58 , pp. 48-57
    • Lunceford, J.1    Davidian, M.2    Tsiatis, A.3
  • 34
    • 77958531196 scopus 로고    scopus 로고
    • Weighted Kaplan-Meier estimators for two-stage treatment regimes
    • Miyahara S, Wahed A. 2010. Weighted Kaplan-Meier estimators for two-stage treatment regimes. Stat.Med. 29:2581-91
    • (2010) Stat.Med. , vol.29 , pp. 2581-2591
    • Miyahara, S.1    Wahed, A.2
  • 35
    • 84869185228 scopus 로고    scopus 로고
    • Q-learning for estimating optimal dynamic treatment rules from observational data
    • Moodie E, Chakraborty B, Kramer M. 2012. Q-learning for estimating optimal dynamic treatment rules from observational data. Can. J. Stat. 40:629-45
    • (2012) Can. J. Stat. , vol.40 , pp. 629-645
    • Moodie, E.1    Chakraborty, B.2    Kramer, M.3
  • 36
    • 69949172005 scopus 로고    scopus 로고
    • Estimating response-maximized decision rules with applications to breastfeeding
    • Moodie E, Platt R, Kramer M. 2009. Estimating response-maximized decision rules with applications to breastfeeding. J. Am. Stat. Assoc. 104:155-65
    • (2009) J. Am. Stat. Assoc. , vol.104 , pp. 155-165
    • Moodie, E.1    Platt, R.2    Kramer, M.3
  • 37
    • 0038107066 scopus 로고    scopus 로고
    • Optimal dynamic treatment regimes
    • Murphy S. 2003. Optimal dynamic treatment regimes. J. R. Stat. Soc. B 65:331-66
    • (2003) J. R. Stat. Soc. B , vol.65 , pp. 331-366
    • Murphy, S.1
  • 38
    • 23244437791 scopus 로고    scopus 로고
    • A generalization error for Q-learning
    • Murphy S. 2005a. A generalization error for Q-learning. J. Mach. Learn. Res. 6:1073-97
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1073-1097
    • Murphy, S.1
  • 39
    • 19144362679 scopus 로고    scopus 로고
    • An experimental design for the development of adaptive treatment strategies
    • Murphy S. 2005b. An experimental design for the development of adaptive treatment strategies. Stat. Med. 24:1455-81
    • (2005) Stat. Med. , vol.24 , pp. 1455-1481
    • Murphy, S.1
  • 40
    • 70350346603 scopus 로고    scopus 로고
    • Screening experiments for developing dynamic treatment regimes
    • Murphy S, Bingham D. 2009. Screening experiments for developing dynamic treatment regimes. J. Am. Stat. Assoc. 184:391-408
    • (2009) J. Am. Stat. Assoc. , vol.184 , pp. 391-408
    • Murphy, S.1    Bingham, D.2
  • 41
    • 1542469617 scopus 로고    scopus 로고
    • Marginal mean models for dynamic regimes
    • Conduct Probl. Prev. Res. Group.
    • Murphy S, Van Der Laan M, Robins JM, Conduct Probl. Prev. Res. Group. 2001. Marginal mean models for dynamic regimes. J. Am. Stat. Assoc. 96:1410-23
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 1410-1423
    • Murphy, S.1    Van Der Laan, M.2    Robins, J.M.3
  • 42
    • 84867783897 scopus 로고    scopus 로고
    • Experimental design and primary data analysis methods for comparing adaptive interventions
    • Nahum-Shani I, Qian M, Almiral D, Pelham W, Gnagy B, et al. 2012a. Experimental design and primary data analysis methods for comparing adaptive interventions. Psychol. Methods 17:457-77
    • (2012) Psychol. Methods , vol.17 , pp. 457-477
    • Nahum-Shani, I.1    Qian, M.2    Almiral, D.3    Pelham, W.4    Gnagy, B.5
  • 43
    • 84874401815 scopus 로고    scopus 로고
    • Q-learning: A data analysis method for constructing adaptive interventions
    • Nahum-Shani I, Qian M, Almiral D, Pelham W, Gnagy B, et al. 2012b. Q-learning: A data analysis method for constructing adaptive interventions. Psychol. Methods 17:478-94
    • (2012) Psychol. Methods , vol.17 , pp. 478-494
    • Nahum-Shani, I.1    Qian, M.2    Almiral, D.3    Pelham, W.4    Gnagy, B.5
  • 44
    • 79953242161 scopus 로고    scopus 로고
    • A dynamical model for describing behavioural interventions for weight loss and body composition change
    • Navarro-Barrientos J, Rivera D, Collins L. 2011. A dynamical model for describing behavioural interventions for weight loss and body composition change. Math. Comput. Model. Dyn. Syst. 17:183-203
    • (2011) Math. Comput. Model. Dyn. Syst. , vol.17 , pp. 183-203
    • Navarro-Barrientos, J.1    Rivera, D.2    Collins, L.3
  • 45
    • 84867825525 scopus 로고    scopus 로고
    • Statistical methodology for a SMART design in the development of adaptive treatment strategies
    • ed. PE Shrout, KM Keyes, K Ornstein, New York: Oxford Univ. Press
    • Oetting A, Levy J, Weiss R,Murphy S. 2011. Statistical methodology for a SMART design in the development of adaptive treatment strategies. In Causality and Psychopathology: Finding the Determinants of DisorDers and Their Cures, ed. PE Shrout, KM Keyes, K Ornstein, pp. 179-205. New York: Oxford Univ. Press
    • (2011) Causality and Psychopathology: Finding the Determinants of DisorDers and Their Cures , pp. 179-205
    • Oetting, A.1    Levy, J.2    Weiss, R.3    Murphy, S.4
  • 46
    • 0009037283 scopus 로고
    • The conditional level of the F-test
    • Olshen R. 1973. The conditional level of the F-test. J. Am. Stat. Assoc. 68:692-98
    • (1973) J. Am. Stat. Assoc. , vol.68 , pp. 692-698
    • Olshen, R.1
  • 47
    • 77950539248 scopus 로고    scopus 로고
    • Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: Main content
    • Orellana L, Rotnitzky A, Robins JM. 2010a. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: main content. Int. J. Biostat. 6:8
    • (2010) Int. J. Biostat. , vol.6 , pp. 8
    • Orellana, L.1    Rotnitzky, A.2    Robins, J.M.3
  • 48
    • 77950539248 scopus 로고    scopus 로고
    • Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part II: Proofs and additional results
    • Orellana L, Rotnitzky A, Robins JM. 2010b. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part II: proofs and additional results. Int. J. Biostat. 6:9
    • (2010) Int. J. Biostat. , vol.6 , pp. 9
    • Orellana, L.1    Rotnitzky, A.2    Robins, J.M.3
  • 49
    • 0036832956 scopus 로고    scopus 로고
    • Kernel-based reinforcement learning
    • Ormoneit D, Sen S. 2002. Kernel-based reinforcement learning. Mach. Learn. 49:161-78
    • (2002) Mach. Learn. , vol.49 , pp. 161-178
    • Ormoneit, D.1    Sen, S.2
  • 50
    • 33947612397 scopus 로고    scopus 로고
    • Individualized treatment rules: Generating candidate clinical trials
    • Petersen ML, Deeks SG, Van Der Laan MJ. 2007. Individualized treatment rules: generating candidate clinical trials. Stat. Med. 26:4578-601
    • (2007) Stat. Med. , vol.26 , pp. 4578-4601
    • Petersen, M.L.1    Deeks, S.G.2    Van Der Laan, M.J.3
  • 51
    • 84870707096 scopus 로고    scopus 로고
    • Performance guarantees for individualized treatment rules
    • Qian M, Murphy S. 2011. Performance guarantees for individualized treatment rules. Ann. Stat. 39:1180-210
    • (2011) Ann. Stat. , vol.39 , pp. 1180-1210
    • Qian, M.1    Murphy, S.2
  • 52
    • 34047187107 scopus 로고    scopus 로고
    • Using engineering control principles to inform the design of adaptive interventions: A conceptual introduction
    • Rivera D, Pew M, Collins L. 2007. Using engineering control principles to inform the design of adaptive interventions: A conceptual introduction. Drug Alcohol Depend. 88:S31-40
    • (2007) Drug Alcohol Depend , vol.88
    • Rivera, D.1    Pew, M.2    Collins, L.3
  • 53
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with sustained exposure periods-application to control of the healthy worker survivor effect
    • Robins J. 1986. A new approach to causal inference in mortality studies with sustained exposure periods-application to control of the healthy worker survivor effect. Math. Model. 7:1393-512
    • (1986) Math. Model. , vol.7 , pp. 1393-1512
    • Robins, J.1
  • 54
    • 0002596470 scopus 로고
    • The analysis of randomized and nonrandomized AIDS treatment trials using a new approach to causal inference in longitudinal studies
    • ed. L Sechrest, H Freeman, A Mulley,New York: Natl. Cent. Health Serv. Res. Health Care Technol
    • Robins J. 1989. The analysis of randomized and nonrandomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS, ed. L Sechrest, H Freeman, A Mulley, pp. 113-59. New York: Natl. Cent. Health Serv. Res. Health Care Technol.
    • (1989) Health Service Research Methodology: A Focus on AIDS , pp. 113-159
    • Robins, J.1
  • 55
    • 0002903432 scopus 로고
    • Information recovery and bias adjustment in proportional hazards regression analysis of randomized trials using surrogate markers
    • Alexandria, VA: Am. Stat. Assoc
    • Robins J. 1993. Information recovery and bias adjustment in proportional hazards regression analysis of randomized trials using surrogate markers. Proc. Biopharm. Sect. Am. Stat. Assoc., pp. 24-33. Alexandria, VA: Am. Stat. Assoc.
    • (1993) Proc. Biopharm. Sect. Am. Stat. Assoc. , pp. 24-33
    • Robins, J.1
  • 56
    • 84972969037 scopus 로고
    • Correcting for non-compliance in randomized trials using structural nested mean models
    • Robins J. 1994. Correcting for non-compliance in randomized trials using structural nested mean models. Commun. Stat. 23:2379-412
    • (1994) Commun. Stat. , vol.23 , pp. 2379-2412
    • Robins, J.1
  • 57
    • 0001815275 scopus 로고    scopus 로고
    • Causal inference from complex longitudinal data
    • ed. M Berkane, Springer New York
    • Robins J. 1997. Causal inference from complex longitudinal data. In Latent Variable Modeling and Applications to Causality, ed. M Berkane, pp. 69-117. New York: Springer
    • (1997) Latent Variable Modeling and Applications to Causality , pp. 69-117
    • Robins, J.1
  • 58
    • 0003135327 scopus 로고    scopus 로고
    • Marginal structural models versus structural nested models as tools for causal inference
    • ed. ME Halloran, D Berry New York Springer
    • Robins J. 1999. Marginal structural models versus structural nested models as tools for causal inference. In Statistical Models in Epidemiology, the Environment, and Clinical Trials, ed. ME Halloran, D Berry, pp. 95-134. New York: Springer
    • (1999) Statistical Models in Epidemiology, the Environment, and Clinical Trials , pp. 95-134
    • Robins, J.1
  • 59
    • 33845913126 scopus 로고    scopus 로고
    • Optimal structural nested models for optimal sequential decisions
    • 2nd, ed. D Lin, P Heagerty, New York Springer
    • Robins J. 2004. Optimal structural nested models for optimal sequential decisions. Proc. Seattle Symp. Biostat., 2nd, ed. D Lin, P Heagerty, pp. 189-326. New York: Springer
    • (2004) Proc. Seattle Symp. Biostat , pp. 189-326
    • Robins, J.1
  • 60
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins JM,Hernán MA, Brumback B. 2000. Marginal structural models and causal inference in epidemiology. Epidemiology 11:550-60
    • (2000) Epidemiology , vol.11 , pp. 550-560
    • Robins, J.M.1    Hernán, M.A.2    Brumback, B.3
  • 61
    • 53849122359 scopus 로고    scopus 로고
    • Estimation and extrapolation of optimal treatment and testing strategies
    • Robins JM, Orellana L, Rotnitzky A. 2008. Estimation and extrapolation of optimal treatment and testing strategies. Stat. Med. 27:4678-721
    • (2008) Stat. Med. , vol.27 , pp. 4678-4721
    • Robins, J.M.1    Orellana, L.2    Rotnitzky, A.3
  • 62
    • 34047154061 scopus 로고    scopus 로고
    • Using mathematical modeling and control to develop structured treatment interruption strategies for HIV infection
    • Rosenberg E, Davidian M, Banks H. 2007. Using mathematical modeling and control to develop structured treatment interruption strategies for HIV infection. Drug Alcohol Depend. 88:S41-51
    • (2007) Drug Alcohol Depend. , vol.88
    • Rosenberg, E.1    Davidian, M.2    Banks, H.3
  • 63
    • 33845907187 scopus 로고    scopus 로고
    • Estimation of optimal dynamic anticoagulation regimes from observational data: A regret-based approach
    • Rosthøj S, Fullwood C, HenDerson R, Stewart S. 2006. Estimation of optimal dynamic anticoagulation regimes from observational data: A regret-based approach. Stat. Med. 25:4197-215
    • (2006) Stat. Med. , vol.25 , pp. 4197-4215
    • Rosthøj, S.1    Fullwood, C.2    HenDerson, R.3    Stewart, S.4
  • 64
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin D. 1974. Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66:688-701
    • (1974) J. Educ. Psychol. , vol.66 , pp. 688-701
    • Rubin, D.1
  • 65
    • 84950657856 scopus 로고
    • Discussion of "Randomized analysis of experimental data: The Fisher randomization test
    • by Basu D.
    • Rubin D. 1980. Discussion of "Randomized analysis of experimental data: The Fisher randomization test" by Basu D. J. Am. Stat. Assoc. 75:591-93
    • (1980) J. Am. Stat. Assoc. , vol.75 , pp. 591-593
    • Rubin, D.1
  • 66
    • 0042304469 scopus 로고
    • Bootstrap sample size in nonregular cases
    • Shao J. 1994. Bootstrap sample size in nonregular cases. Proc. Am. Math. Soc. 122:1251-62
    • (1994) Proc. Am. Math. Soc. , vol.122 , pp. 1251-1262
    • Shao, J.1
  • 67
    • 84864102291 scopus 로고    scopus 로고
    • Estimating the optimal dynamic antipsychotic treatment regime: Evidence from the sequential-multiple assignment randomized CATIE Schizophrenia Study
    • Shortreed S, Moodie E. 2012. Estimating the optimal dynamic antipsychotic treatment regime: evidence from the sequential-multiple assignment randomized CATIE Schizophrenia Study. J. R. Stat. Soc. C 61:577-99
    • (2012) J. R. Stat. Soc.C , vol.61 , pp. 577-599
    • Shortreed, S.1    Moodie, E.2
  • 69
    • 0034732660 scopus 로고    scopus 로고
    • Evaluating multiple treatment courses in clinical trials
    • Thall P, Millikan R, Sung H. 2000. Evaluating multiple treatment courses in clinical trials. Stat. Med. 30:1011-28
    • (2000) Stat. Med. , vol.30 , pp. 1011-1028
    • Thall, P.1    Millikan, R.2    Sung, H.3
  • 70
    • 0036489042 scopus 로고    scopus 로고
    • Selecting therapeutic strategies based on efficacy and death in multicourse clinical trials
    • Thall P, Sung H, Estey E. 2002. Selecting therapeutic strategies based on efficacy and death in multicourse clinical trials. J. Am. Stat. Assoc. 97:29-39
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 29-39
    • Thall, P.1    Sung, H.2    Estey, E.3
  • 71
    • 21244434260 scopus 로고    scopus 로고
    • Covariate-adjusted adaptive randomization in a sarcoma trial with multi-stage treatments
    • Thall P, Wathen J. 2005. Covariate-adjusted adaptive randomization in a sarcoma trial with multi-stage treatments. Stat. Med. 24:1947-64
    • (2005) Stat. Med. , vol.24 , pp. 1947-1964
    • Thall, P.1    Wathen, J.2
  • 72
    • 36048985798 scopus 로고    scopus 로고
    • Adaptive therapy for androgenindependent prostate cancer: A randomized selection trial of four regimens
    • Thall PF, Logothetis C, Pagliaro LC, Wen S, Brown MA, et al. 2007. Adaptive therapy for androgenindependent prostate cancer: A randomized selection trial of four regimens. J. Natl.Cancer Inst. 99:1613-22
    • (2007) J. Natl.Cancer Inst. , vol.99 , pp. 1613-1622
    • Thall, P.F.1    Logothetis, C.2    Pagliaro, L.C.3    Wen, S.4    Brown, M.A.5
  • 73
    • 33847633000 scopus 로고    scopus 로고
    • Causal effect models for realistic individualized treatment and intention to treat rules
    • Van Der Laan MJ, Petersen ML. 2007a. Causal effect models for realistic individualized treatment and intention to treat rules. Int. J. Biostat. 3:3
    • (2007) Int. J. Biostat. , vol.3 , pp. 3
    • Van Der Laan, M.J.1    Petersen, M.L.2
  • 74
    • 33947703570 scopus 로고    scopus 로고
    • Statistical learning of origin-specific statically optimal individualized treatment rules
    • Van Der Laan MJ, Petersen ML. 2007b. Statistical learning of origin-specific statically optimal individualized treatment rules. Int. J. Biostat. 3:6
    • (2007) Int. J. Biostat. , vol.3 , pp. 6
    • Van Der Laan, M.J.1    Petersen, M.L.2
  • 76
    • 1642358199 scopus 로고    scopus 로고
    • Optimal estimator for the survival distribution and related quantities for treatment policies in two-stage randomized designs in clinical trials
    • Wahed A, Tsiatis A. 2004. Optimal estimator for the survival distribution and related quantities for treatment policies in two-stage randomized designs in clinical trials. Biometrics 60:124-33
    • (2004) Biometrics , vol.60 , pp. 124-133
    • Wahed, A.1    Tsiatis, A.2
  • 77
    • 33644973742 scopus 로고    scopus 로고
    • Semiparametric efficient estimation of survival distributions in two-stage randomisation designs in clinical trials with censored data
    • Wahed A, Tsiatis A. 2006. Semiparametric efficient estimation of survival distributions in two-stage randomisation designs in clinical trials with censored data. Biometrika 93:163-77
    • (2006) Biometrika , vol.93 , pp. 163-177
    • Wahed, A.1    Tsiatis, A.2
  • 78
    • 84864385401 scopus 로고    scopus 로고
    • Evaluation of viable dynamic treatment regimes in a sequentially randomized trial of adVanced prostate cancer
    • Wang L, Rotnitzky A, Lin X, Millikan R, Thall P. 2012. Evaluation of viable dynamic treatment regimes in a sequentially randomized trial of adVanced prostate cancer. J. Am. Stat. Assoc. 107:493-508
    • (2012) J. Am. Stat. Assoc. , vol.107 , pp. 493-508
    • Wang, L.1    Rotnitzky, A.2    Lin, X.3    Millikan, R.4    Thall, P.5
  • 79
    • 84906088229 scopus 로고    scopus 로고
    • Estimating optimal treatment regimes from a classification perspective
    • Zhang B, Tsiatis A, Davidian M, Zhang M, Laber E. 2012a. Estimating optimal treatment regimes from a classification perspective. Stat 1:103-14
    • (2012) Stat , vol.1 , pp. 103-114
    • Zhang, B.1    Tsiatis, A.2    Davidian, M.3    Zhang, M.4    Laber, E.5
  • 80
    • 84871667403 scopus 로고    scopus 로고
    • A robust method for estimating optimal treatment regimes
    • Zhang B, Tsiatis A, Laber E, Davidian M. 2012b. A robust method for estimating optimal treatment regimes. Biometrics 68:1010-18
    • (2012) Biometrics , vol.68 , pp. 1010-1018
    • Zhang, B.1    Tsiatis, A.2    Laber, E.3    Davidian, M.4
  • 81
    • 84870657864 scopus 로고    scopus 로고
    • Estimating individual treatment rules using outcome weighted learning
    • Zhao Y, Zeng D, Rush A, Kosorok M. 2012. Estimating individual treatment rules using outcome weighted learning. J. Am. Stat. Assoc. 107:1106-18
    • (2012) J. Am. Stat. Assoc. , vol.107 , pp. 1106-1118
    • Zhao, Y.1    Zeng, D.2    Rush, A.3    Kosorok, M.4
  • 82
    • 83655181241 scopus 로고    scopus 로고
    • Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer
    • Zhao Y, Zeng D, Socinski M, Kosorok M. 2011. Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer. Biometrics 67:1422-33
    • (2011) Biometrics , vol.67 , pp. 1422-1433
    • Zhao, Y.1    Zeng, D.2    Socinski, M.3    Kosorok, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.