메뉴 건너뛰기




Volumn 20, Issue 5, 2013, Pages 859-866

Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; EXTRACTION; MACHINE LEARNING; NARRATIVE; RECOGNITION; TASK PERFORMANCE; TEMPORAL CORTEX;

EID: 84882747799     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2013-001625     Document Type: Article
Times cited : (72)

References (50)
  • 1
    • 84871984012 scopus 로고    scopus 로고
    • Clinical decision support with automated text processing for cervical cancer screening
    • Wagholikar KB, Maclaughlin KL, Henry MR, et al. Clinical decision support with automated text processing for cervical cancer screening. J Am Med Inform Assoc 2012;19:833-83.
    • (2012) J Am Med Inform Assoc , vol.19 , pp. 833-883
    • Wagholikar, K.B.1    Maclaughlin, K.L.2    Henry, M.R.3
  • 2
    • 77950801495 scopus 로고    scopus 로고
    • The Health Informatics Trial Enhancement Project (HITE): Using routinely collected primary care data to identify potential participants for a depression trial
    • McGregor JI, Brooks CJ, Chalasani P, et al. The Health Informatics Trial Enhancement Project (HITE): Using routinely collected primary care data to identify potential participants for a depression trial. Trials 2010;11:39.
    • (2010) Trials , vol.11 , pp. 39
    • McGregor, J.I.1    Brooks, C.J.2    Chalasani, P.3
  • 3
    • 84871853864 scopus 로고    scopus 로고
    • BoB, a best-of-breed automated text de-identification system for VHA clinical documents
    • Ferrández O, South B, Shen S, et al. BoB, a best-8of-breed automated text de-identification system for VHA clinical documents. J Am Med Inform Assoc 2013;20:77-83.
    • (2013) J Am Med Inform Assoc , vol.20 , pp. 77-83
    • Ferrández, O.1    South, B.2    Shen, S.3
  • 4
    • 34748825515 scopus 로고    scopus 로고
    • Building and evaluating annotated corpora for medical NLP systems
    • Washington, DC, USA
    • Ogren PV, Savova GK, Buntrock JD, et al. Building and evaluating annotated corpora for medical NLP systems. AMIA Annual Symposium Proceedings; 2006:1050. Washington, DC, USA.
    • (2006) AMIA Annual Symposium Proceedings , pp. 1050
    • Ogren, P.V.1    Savova, G.K.2    Buntrock, J.D.3
  • 5
    • 8044228110 scopus 로고
    • The analysis and processing of clinical narrative
    • Sager N, Friedman C, Chi E, et al. The analysis and processing of clinical narrative. MedInfo 1986;2:1101-5.
    • (1986) MedInfo , vol.2 , pp. 1101-1105
    • Sager, N.1    Friedman, C.2    Chi, E.3
  • 7
    • 0028955263 scopus 로고
    • Unlocking clinical data from narrative reports: a study of natural language processing
    • Hripcsak G, Friedman C, Alderson PO, et al. Unlocking clinical data from narrative reports: a study of natural language processing. Ann Intern Med 1995;122:681-8.
    • (1995) Ann Intern Med , vol.122 , pp. 681-688
    • Hripcsak, G.1    Friedman, C.2    Alderson, P.O.3
  • 8
    • 0028403632 scopus 로고
    • A general natural-language text processor for clinical radiology
    • Friedman C, Alderson PO, Austin JH, et al. A general natural-language text processor for clinical radiology. J Am Med Inform Assoc 1994;1:161-74.
    • (1994) J Am Med Inform Assoc , vol.1 , pp. 161-174
    • Friedman, C.1    Alderson, P.O.2    Austin, J.H.3
  • 9
    • 0036082141 scopus 로고    scopus 로고
    • Use of natural language processing to translate clinical information from a database of 889,921 chest radiographic reports
    • Hripcsak G, Austin JH, Alderson PO, et al. Use of natural language processing to translate clinical information from a database of 889,921 chest radiographic reports. Radiology 2002;224:157-63.
    • (2002) Radiology , vol.224 , pp. 157-163
    • Hripcsak, G.1    Austin, J.H.2    Alderson, P.O.3
  • 11
    • 0033258535 scopus 로고    scopus 로고
    • Automatic identification of pneumonia related concepts on chest x-ray reports
    • Washington, DC, USA
    • Fiszman M, Chapman WW, Evans SR, et al. Automatic identification of pneumonia related concepts on chest x-ray reports. Proceedings of AMIA Symposium; 1999:67-71. Washington, DC, USA.
    • (1999) Proceedings of AMIA Symposium , pp. 67-71
    • Fiszman, M.1    Chapman, W.W.2    Evans, S.R.3
  • 12
  • 13
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications
    • Savova GK, Masanz JJ, Ogren PV, et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc 2010;17:507-13.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 507-513
    • Savova, G.K.1    Masanz, J.J.2    Ogren, P.V.3
  • 14
    • 33748046130 scopus 로고    scopus 로고
    • Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system
    • Zeng QT, Goryachev S, Weiss S, et al. Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system. BMC Med Inform Decis Mak 2006;6:30.
    • (2006) BMC Med Inform Decis Mak , vol.6 , pp. 30
    • Zeng, Q.T.1    Goryachev, S.2    Weiss, S.3
  • 18
    • 0032240217 scopus 로고    scopus 로고
    • Automated knowledge extraction from the UMLS
    • Orlando, FL, USA.
    • Zeng Q, Cimino JJ. Automated knowledge extraction from the UMLS. Proceedings of AMIA Symposium; 1998:568-72. Orlando, FL, USA.
    • (1998) Proceedings of AMIA Symposium , pp. 568-572
    • Zeng, Q.1    Cimino, J.J.2
  • 20
    • 26844450908 scopus 로고    scopus 로고
    • The mammalian phenotype ontology as a tool for annotating, analyzing, and comparing phenotypic information
    • Smith CL, Goldsmith CA, Eppig JT. The mammalian phenotype ontology as a tool for annotating, analyzing, and comparing phenotypic information. Genome Biol 2005;6:R7.
    • (2005) Genome Biol , vol.6
    • Smith, C.L.1    Goldsmith, C.A.2    Eppig, J.T.3
  • 22
    • 77955287813 scopus 로고    scopus 로고
    • An overview of MetaMap: historical perspective and recent advances
    • Aronson AR, Lang FM. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc 2010;17:229-36.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 229-236
    • Aronson, A.R.1    Lang, F.M.2
  • 23
    • 0035752429 scopus 로고    scopus 로고
    • Effective mapping of biomedical text to the UMLS metathesaurus: the MetaMap program
    • Washington, DC, USA.
    • Aronson AR. Effective mapping of biomedical text to the UMLS metathesaurus: the MetaMap program. Proceedings of AMIA Symposium; 2001:17-21. Washington, DC, USA.
    • (2001) Proceedings of AMIA Symposium , pp. 17-21
    • Aronson, A.R.1
  • 24
    • 70349455468 scopus 로고    scopus 로고
    • Development and evaluation of a clinical note section header terminology
    • Washington, DC, USA.
    • Denny JC, Miller RA, Johnson KB, et al. Development and evaluation of a clinical note section header terminology. AMIA Annual Symposium Proceedings; 2008;156-60. Washington, DC, USA.
    • (2008) AMIA Annual Symposium Proceedings , pp. 156-160
    • Denny, J.C.1    Miller, R.A.2    Johnson, K.B.3
  • 25
    • 67649352145 scopus 로고    scopus 로고
    • Recognizing obesity and comorbidities in sparse data
    • Uzuner Ö. Recognizing obesity and comorbidities in sparse data. J Am Med Inform Assoc 2009;16:561-70.
    • (2009) J Am Med Inform Assoc , vol.16 , pp. 561-570
    • Uzuner, O.1
  • 26
    • 67649359351 scopus 로고    scopus 로고
    • Semantic classification of diseases in discharge summaries using a context-aware rulebased classifier
    • Solt I, Tikk D, Gál V, et al. Semantic classification of diseases in discharge summaries using a context-aware rulebased classifier. J Am Med Inform Assoc 2009;16:580-4.
    • (2009) J Am Med Inform Assoc , vol.16 , pp. 580-584
    • Solt, I.1    Tikk, D.2    Gál, V.3
  • 27
    • 67649342013 scopus 로고    scopus 로고
    • A text mining approach to the prediction of a disease status from clinical discharge summaries
    • Yang H, Spasic I, Keane J, et al. A text mining approach to the prediction of a disease status from clinical discharge summaries. J Am Med Inform Assoc 2009;16:596-600.
    • (2009) J Am Med Inform Assoc , vol.16 , pp. 596-600
    • Yang, H.1    Spasic, I.2    Keane, J.3
  • 28
    • 78149480799 scopus 로고    scopus 로고
    • Extracting medication information from clinical text
    • Uzuner Ö, Solti I, Cadag E. Extracting medication information from clinical text. J Am Med Inform Assoc 2010;17:514-18.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 514-518
    • Uzuner, O.1    Solti, I.2    Cadag, E.3
  • 29
    • 78149480800 scopus 로고    scopus 로고
    • Medication information extraction with linguistic pattern matching and semantic rules
    • Spasic I, Sarafraz F, Keane JA, et al. Medication information extraction with linguistic pattern matching and semantic rules. J Am Med Inform Assoc 2010;17:532-5.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 532-535
    • Spasic, I.1    Sarafraz, F.2    Keane, J.A.3
  • 30
    • 80053292637 scopus 로고    scopus 로고
    • 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text
    • Uzuner Ö, South BR, Shen S, et al. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc 2011;18:552-6.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 552-556
    • Uzuner, O.1    South, B.R.2    Shen, S.3
  • 31
    • 84882744737 scopus 로고    scopus 로고
    • Evaluating Temporal Relations in Clinical Text: 2012 i2b2 Challenge Overview
    • Sun W, Rumshisky A, Uzuner Ö. Evaluating Temporal Relations in Clinical Text: 2012 i2b2 Challenge Overview. J Am Med Inform Assoc 2013;20:806-13.
    • (2013) J Am Med Inform Assoc , vol.20 , pp. 806-813
    • Sun, W.1    Rumshisky, A.2    Uzuner, O.3
  • 32
    • 80053241946 scopus 로고    scopus 로고
    • Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010
    • de Bruijn B, Cherry C, Kiritchenko S, et al. Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010. J Am Med Inform Assoc 2011;18:557-62.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 557-562
    • de Bruijn, B.1    Cherry, C.2    Kiritchenko, S.3
  • 34
    • 80053287229 scopus 로고    scopus 로고
    • A knowledge discovery and reuse pipeline for information extraction in clinical notes
    • Patrick JD, Nguyen DH, Wang Y, et al. A knowledge discovery and reuse pipeline for information extraction in clinical notes. J Am Med Inform Assoc 2011;18:574-9.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 574-579
    • Patrick, J.D.1    Nguyen, D.H.2    Wang, Y.3
  • 35
    • 80053271549 scopus 로고    scopus 로고
    • A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries
    • Jiang M, Chen Y, Liu M, et al. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J Am Med Inform Assoc 2011;18:601-6.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 601-606
    • Jiang, M.1    Chen, Y.2    Liu, M.3
  • 36
    • 84861913869 scopus 로고    scopus 로고
    • Using an ensemble system to improve concept extraction from clinical records
    • Kang N, Afzal Z, Singh B, et al. Using an ensemble system to improve concept extraction from clinical records. J Biomed Inform 2012;45:423-8.
    • (2012) J Biomed Inform , vol.45 , pp. 423-428
    • Kang, N.1    Afzal, Z.2    Singh, B.3
  • 38
    • 50149091296 scopus 로고    scopus 로고
    • DrugBank and its relevance to pharmacogenomics
    • Wishart DS. DrugBank and its relevance to pharmacogenomics. Pharmacogenomics 2008;9:1155-62.
    • (2008) Pharmacogenomics , vol.9 , pp. 1155-1162
    • Wishart, D.S.1
  • 41
    • 84873057508 scopus 로고    scopus 로고
    • Detecting temporal expressions in medical narratives
    • Reeves RM, Ong FR, Matheny ME, et al. Detecting temporal expressions in medical narratives. Int J Med Inform 2013;82:118-2.
    • (2013) Int J Med Inform , vol.82 , pp. 118-112
    • Reeves, R.M.1    Ong, F.R.2    Matheny, M.E.3
  • 42
    • 77951427459 scopus 로고    scopus 로고
    • Temporal processing with the TARSQI toolkit
    • Linguistics: Demonstration Papers (COLING -08). Association for Computational Linguistics; Stroudsburg, PA, USA
    • Verhagen M, Pustejovsky J. Temporal processing with the TARSQI toolkit. 22nd International Conference on Computational Linguistics: Demonstration Papers (COLING -08). Association for Computational Linguistics; Stroudsburg, PA, USA, 2008:189-92.
    • (2008) 22nd International Conference on Computationa , pp. 189-192
    • Verhagen, M.1    Pustejovsky, J.2
  • 43
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: probabilistic models for segmenting and labeling sequence data
    • Lafferty JD, McCallum A, Pereira FCN. Conditional random fields: probabilistic models for segmenting and labeling sequence data. ICML; 2001: 282-9.
    • (2001) ICML , pp. 282-289
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.C.N.3
  • 44
    • 84882773987 scopus 로고    scopus 로고
    • The Apache Software Foundation, (accessed 3 Jan 2013)
    • The Apache Software Foundation. http://opennlp.apache.org/ (accessed 3 Jan 2013).
  • 46
    • 0035741485 scopus 로고    scopus 로고
    • A simple algorithm for identifying negated findings and diseases in discharge summaries
    • Chapman WW, Bridewell W, Hanbury P, et al. A simple algorithm for identifying negated findings and diseases in discharge summaries. J Biomed Inform 2001;34:301-10.
    • (2001) J Biomed Inform , vol.34 , pp. 301-310
    • Chapman, W.W.1    Bridewell, W.2    Hanbury, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.