메뉴 건너뛰기




Volumn 60, Issue 1, 2015, Pages 708-713

Survey on anomaly detection using data mining techniques

Author keywords

Anomaly detection; Classification; Clustering; Data mining; Intrusion detection system

Indexed keywords

CLASSIFICATION (OF INFORMATION); INTRUSION DETECTION; KNOWLEDGE BASED SYSTEMS;

EID: 84941061963     PISSN: None     EISSN: 18770509     Source Type: Conference Proceeding    
DOI: 10.1016/j.procs.2015.08.220     Document Type: Conference Paper
Times cited : (498)

References (29)
  • 2
    • 84880172566 scopus 로고    scopus 로고
    • Hybrid approach for detection of Anomaly network traffic using data mining techniques
    • Agarwal B., Mittal N., Hybrid Approach for Detection of Anomaly Network Traffic using Data Mining Techniques, Procedia Technology; 6; 2012; p. 996-1003.
    • (2012) Procedia Technology , vol.6 , pp. 996-1003
    • Agarwal, B.1    Mittal, N.2
  • 5
    • 0034455983 scopus 로고    scopus 로고
    • Adaptive intrusion detection: A data mining approach
    • Lee W., Stolfo S. J., Mok K. W., Adaptive intrusion detection: A data mining approach; Artificial Intelligence Review; 14(6);2000; p. 533-567.
    • (2000) Artificial Intelligence Review , vol.14 , Issue.6 , pp. 533-567
    • Lee, W.1    Stolfo, S.J.2    Mok, K.W.3
  • 8
    • 84896971289 scopus 로고    scopus 로고
    • A hierarchical framework using approximated local outlier factor for efficient Anomaly detection
    • Xu L., Yeh Y. R., Lee Y. J., Li J., A Hierarchical Framework Using Approximated Local Outlier Factor for Efficient Anomaly Detection; Procedia Computer Science; 19; 2013; p. 1174-1181.
    • (2013) Procedia Computer Science , vol.19 , pp. 1174-1181
    • Xu, L.1    Yeh, Y.R.2    Lee, Y.J.3    Li, J.4
  • 10
    • 76249095726 scopus 로고    scopus 로고
    • Traffic anomaly detection using k-means clustering
    • Munz, G., Li S., Carle G., Traffic Anomaly Detection Using K-Means Clustering; GI/ITG Workshop MMBnet; 2007; p. 1-8.
    • (2007) GI/ITG Workshop MMBnet , pp. 1-8
    • Munz, G.1    Li, S.2    Carle, G.3
  • 11
    • 84941094625 scopus 로고    scopus 로고
    • Data mining approaches for network intrusion detection from dimensionality reduction to misuse and anomaly detection
    • Syarif I., Prugel-Bennett A., Wills G., Data mining approaches for network intrusion detection from dimensionality reduction to misuse and anomaly detection; Journal of Information Technology Review; 3(2);2012; p. 70-83.
    • (2012) Journal of Information Technology Review , vol.3 , Issue.2 , pp. 70-83
    • Syarif, I.1    Prugel-Bennett, A.2    Wills, G.3
  • 16
    • 58349096877 scopus 로고    scopus 로고
    • Data mining-based intrusion detectors
    • Wu S. Y., Yen E., Data mining-based intrusion detectors; Expert Systems with Applications; 36(3);2009; p. 5605-5612.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 5605-5612
    • Wu, S.Y.1    Yen, E.2
  • 18
    • 77954276704 scopus 로고    scopus 로고
    • Machine learning-based intrusion detection algorithm
    • Tang D. H., Cao Z., Machine Learning-based Intrusion Detection Algorithm; Journal of Computational Information Systems; 5(6);2009; p. 1825-1831.
    • (2009) Journal of Computational Information Systems , vol.5 , Issue.6 , pp. 1825-1831
    • Tang, D.H.1    Cao, Z.2
  • 23
    • 84872710120 scopus 로고    scopus 로고
    • A hybrid Anomaly detection framework in cloud computing using one-class and two-class support vector machines
    • Fu S., Liu J., Pannu H., A Hybrid Anomaly Detection Framework in Cloud Computing Using One-Class and Two-Class Support Vector Machines; In Advanced Data Mining and Applications; Springer Berlin Heidelberg; 2012; p. 726-738.
    • (2012) Advanced Data Mining and Applications; Springer Berlin Heidelberg , pp. 726-738
    • Fu, S.1    Liu, J.2    Pannu, H.3
  • 24
    • 77953620856 scopus 로고    scopus 로고
    • A novel unsupervised classification approach for network anomaly detection by k-Means clustering and ID3 decision tree learning methods
    • Yasami Y., Mozaffari S. P., A novel unsupervised classification approach for network anomaly detection by k-Means clustering and ID3 decision tree learning methods; The Journal of Supercomputing; 53(1);2010; p. 231-245.
    • (2010) The Journal of Supercomputing , vol.53 , Issue.1 , pp. 231-245
    • Yasami, Y.1    Mozaffari, S.P.2
  • 25
    • 77954276704 scopus 로고    scopus 로고
    • Machine learning-based intrusion detection algorithms
    • Tang D. H., Cao Z., Machine Learning-based Intrusion Detection Algorithms; Journal of Computational Information Systems; 5(6);2009; p. 1825-1831.
    • (2009) Journal of Computational Information Systems , vol.5 , Issue.6 , pp. 1825-1831
    • Tang, D.H.1    Cao, Z.2
  • 29
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: Existing solutions and latest technological trends
    • Patcha A., Park J. M., An overview of anomaly detection techniques: Existing solutions and latest technological trends; Computer Networks; 51(12);2007; p. 3448-3470.
    • (2007) Computer Networks , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, A.1    Park, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.