-
1
-
-
34250801472
-
A hybrid machine learning approach to network anomaly detection
-
T. Shon and J. Moon. A hybrid machine learning approach to network anomaly detection. Information Sciences, vol.177, pp.3799-3821, 2007
-
(2007)
Information Sciences
, pp. 3799-3821
-
-
Shon, T.1
Moon, J.2
-
2
-
-
0003902428
-
Cryptography and network security principles and practices
-
USA: Prentice Hall
-
W. Stallings. Cryptography and network security principles and practices. USA: Prentice Hall, 2006
-
(2006)
-
-
Stallings, W.1
-
3
-
-
68049121093
-
Anomaly detection: A survey
-
V. Chandola, A. Banerjee and V. Kumar. Anomaly Detection: A Survey. ACM Computing Surveys, 41(3), pp.1-58, 2009
-
(2009)
ACM Computing Surveys
, vol.41
, Issue.3
, pp. 1-58
-
-
Chandola, V.1
Banerjee, A.2
Kumar, V.3
-
4
-
-
69249230890
-
Intrusion detection by machine learning: A review
-
C.F. Tsai, Y.F Hsu and C.Y. Lin etc. Intrusion detection by machine learning: A review. Expert Systems with Applications, 36(10), pp.11994-12000, 2009
-
(2009)
Expert Systems with Applications
, vol.36
, Issue.10
, pp. 11994-12000
-
-
Tsai, C.F.1
Hsu, Y.F.2
Lin, C.Y.3
-
5
-
-
84885774862
-
A framework for constructing features and models for intrusion detection systems
-
W. Lee and S.J. Stolfo. A framework for constructing features and models for intrusion detection systems. ACM Transaction on Information and System Security. 3(4), pp.227-261,2007
-
(2007)
ACM Transaction on Information and System Security
, vol.3
, Issue.4
, pp. 227-261
-
-
Lee, W.1
Stolfo, S.J.2
-
8
-
-
0036321445
-
Use of k-nearest neighbor classifier for intrusion detection
-
Y. Liao and V. R. Vemuri. Use of k-nearest neighbor classifier for intrusion detection. Computers and Security, 21(5), pp.439-448, 2002
-
(2002)
Computers and Security
, vol.21
, Issue.5
, pp. 439-448
-
-
Liao, Y.1
Vemuri, V.R.2
-
10
-
-
32344452166
-
A comparative study of anomaly detection schemes in netowrk intrusion detection
-
San Francisco, CA
-
A. Lazarevic, L. Ertoz and V. Kumar, etc. A comparative study of anomaly detection schemes in netowrk intrusion detection. In Proc of: The 3th SIAM International Comference on Data Mining, San Francisco, CA, pp.25-36, 2003
-
(2003)
Proc of: The 3th SIAM International Comference on Data Mining
, pp. 25-36
-
-
Lazarevic, A.1
Ertoz, L.2
Kumar, V.3
-
11
-
-
0009900351
-
Anomaly detection over noisy data using learned probability distributions
-
San Francisco, CA
-
E. Eskin. Anomaly detection over noisy data using learned probability distributions. In Proc of: the 17th International Conference on Machine Learning, San Francisco, CA, pp.255-262, 2000
-
(2000)
Proc of: the 17th International Conference on Machine Learning
, pp. 255-262
-
-
Eskin, E.1
-
14
-
-
33646037321
-
Alarm clustering for intrusion detection systems in computer networks
-
R. Perdisci, G. Giacinto and F. Roli, "Alarm clustering for intrusion detection systems in computer networks, " Engineering Applications of Artificial Intelligence, vol. 19, pp. 429-438, 2006
-
(2006)
Engineering Applications of Artificial Intelligence
, vol.19
, pp. 429-438
-
-
Perdisci, R.1
Giacinto, G.2
Roli, F.3
-
15
-
-
33750528950
-
Intrusion detection using a fuzzy genetics-based learning algorithm
-
M. Saniee Abadeha, J. Habibia and C. Lucas, "Intrusion detection using a fuzzy genetics-based learning algorithm, " Journal of Network and Computer Applications, vol. 30, pp. 414-428, 2007
-
(2007)
Journal of Network and Computer Applications
, vol.30
, pp. 414-428
-
-
Saniee Abadeha, M.1
Habibia, J.2
Lucas, C.3
-
17
-
-
33750520151
-
D-SCIDS: Distributed soft computing intrusion detection system
-
A. Abraham, R. Jain and J. Thomas. D-SCIDS: Distributed soft computing intrusion detection system, Journal of Network and Computer Applications, vol.30, pp.81-98, 2007
-
(2007)
Journal of Network and Computer Applications
, vol.30
, pp. 81-98
-
-
Abraham, A.1
Jain, R.2
Thomas, J.3
|