-
1
-
-
84911874556
-
-
1ed st ed(Ed.: A. Trabocchi), Wiley, Hoboken
-
K. M. G. O'Connell, W. R. J. D. Galloway, D. R. Spring, The Basics of Diversity-Oriented Synthesis. In, Diversity-Oriented Synthesis: Basics and Applications in Organic Synthesis Drug Discovery, and Chemical Biology, 1ed st ed(Ed.:, A. Trabocchi,), Wiley, Hoboken, 2013, pp. 1-26;
-
(2013)
Diversity-Oriented Synthesis: Basics and Applications in Organic Synthesis Drug Discovery, and Chemical Biology
, pp. 1-26
-
-
O'Connell, K.M.G.1
Galloway, W.R.J.D.2
Spring, D.R.3
-
2
-
-
48249107117
-
-
R. J. Spandl, M. Díaz-Gavilán, K. M. G. O'Connel, G. L. Thomas, D. R. Spring, Chem. Rec. 2008, 8, 129;
-
(2008)
Chem. Rec.
, vol.8
, pp. 129
-
-
Spandl, R.J.1
Díaz-Gavilán, M.2
O'Connel, K.M.G.3
Thomas, G.L.4
Spring, D.R.5
-
3
-
-
84862008385
-
-
C. J. O'Connor, H. S. G. Beckmann, D. R. Spring, Chem. Soc. Rev. 2012, 41, 4444;
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 4444
-
-
O'Connor, C.J.1
Beckmann, H.S.G.2
Spring, D.R.3
-
4
-
-
84880296641
-
-
W. R. J. D. Galloway, A. Isidro-Llobet, D. R. Spring, Nat. Commun. 2010, 1, 80.
-
(2010)
Nat. Commun.
, vol.1
, pp. 80
-
-
Galloway, W.R.J.D.1
Isidro-Llobet, A.2
Spring, D.R.3
-
5
-
-
33847207721
-
-
K. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angew. Chem. 2006, 118, 7292;
-
(2006)
Angew. Chem.
, vol.118
, pp. 7292
-
-
Nicolaou, K.C.1
Edmonds, D.J.2
Bulger, P.G.3
-
9
-
-
84865343822
-
-
L.-Q. Lu, J.-R. Chen, W.-J. Xiao, Acc. Chem. Res. 2012, 45, 1278;
-
(2012)
Acc. Chem. Res.
, vol.45
, pp. 1278
-
-
Lu, L.-Q.1
Chen, J.-R.2
Xiao, W.-J.3
-
11
-
-
84879880639
-
-
For a review of diversity-oriented natural product synthesis that includes examples of reagent-, substrate-, and catalyst-controlled cascade reactions, see.
-
For a review of diversity-oriented natural product synthesis that includes examples of reagent-, substrate-, and catalyst-controlled cascade reactions, see:, C. Serba, N. Winssinger, Eur. J. Org. Chem. 2013, 4195.
-
(2013)
Eur. J. Org. Chem.
, pp. 4195
-
-
Serba, C.1
Winssinger, N.2
-
13
-
-
84887504590
-
-
X. Zhang, X. Song, H. Li, S. Zhang, X. Chen, X. Yu, W. Wang, Angew. Chem. 2012, 124, 7394;
-
(2012)
Angew. Chem.
, vol.124
, pp. 7394
-
-
Zhang, X.1
Song, X.2
Li, H.3
Zhang, S.4
Chen, X.5
Yu, X.6
Wang, W.7
-
17
-
-
84878847929
-
-
Y. Zhang, S. Wang, S. Wu, S. Zhu, G. Dong, Z. Miao, J. Yao, W. Zhang, C. Sheng, W. Wang, ACS Comb. Sci. 2013, 15, 298;
-
(2013)
ACS Comb. Sci.
, vol.15
, pp. 298
-
-
Zhang, Y.1
Wang, S.2
Wu, S.3
Zhu, S.4
Dong, G.5
Miao, Z.6
Yao, J.7
Zhang, W.8
Sheng, C.9
Wang, W.10
-
18
-
-
77956381224
-
-
H.-G. Cheng, C.-B. Chen, F. Tan, N.-J. Chang, J.-R. Chen, W.-J. Xiao, Eur. J. Org. Chem. 2010, 4976;
-
(2010)
Eur. J. Org. Chem.
, pp. 4976
-
-
Cheng, H.-G.1
Chen, C.-B.2
Tan, F.3
Chang, N.-J.4
Chen, J.-R.5
Xiao, W.-J.6
-
19
-
-
81355139618
-
-
D. Robbins, A. F. Newton, C. Gignoux, J. C. Legeay, A. Sinclair, M. Rejzek, C. A. Laxon, S. K. Yalamanchili, W. Lewis, M. A. O'Connell, R. A. Stockman, Chem. Sci. 2011, 2, 2232;
-
(2011)
Chem. Sci.
, vol.2
, pp. 2232
-
-
Robbins, D.1
Newton, A.F.2
Gignoux, C.3
Legeay, J.C.4
Sinclair, A.5
Rejzek, M.6
Laxon, C.A.7
Yalamanchili, S.K.8
Lewis, W.9
O'Connell, M.A.10
Stockman, R.A.11
-
20
-
-
84878034516
-
-
R. Halim, L. Aurelio, P. J. Scammells, B. L. Flynn, J. Org. Chem. 2013, 78, 4708;
-
(2013)
J. Org. Chem.
, vol.78
, pp. 4708
-
-
Halim, R.1
Aurelio, L.2
Scammells, P.J.3
Flynn, B.L.4
-
21
-
-
74549177240
-
-
M. Díaz-Gavilán, W. R. J. D. Galloway, K. M. G. O'Connell, J. T. Hodkingson, D. R. Spring, Chem. Commun. 2010, 46, 776;
-
(2010)
Chem. Commun.
, vol.46
, pp. 776
-
-
Díaz-Gavilán, M.1
Galloway, W.R.J.D.2
O'Connell, K.M.G.3
Hodkingson, J.T.4
Spring, D.R.5
-
22
-
-
84868551036
-
-
G. Valot, J. Garcia, V. Duplan, C. Serba, S. Barluenga, N. Winssinger, Angew. Chem. 2012, 124, 5487;
-
(2012)
Angew. Chem.
, vol.124
, pp. 5487
-
-
Valot, G.1
Garcia, J.2
Duplan, V.3
Serba, C.4
Barluenga, S.5
Winssinger, N.6
-
24
-
-
82055161640
-
-
B. R. Balthaser, M. C. Maloney, A. B. Beeler, J. A. Porco, Jr., J. K. Snyder, Nat. Chem. 2011, 3, 969;
-
(2011)
Nat. Chem.
, vol.3
, pp. 969
-
-
Balthaser, B.R.1
Maloney, M.C.2
Beeler, A.B.3
Porco, J.A.4
Snyder, J.K.5
-
25
-
-
84885160347
-
-
N. T. Patil, A. Konala, S. Sravanti, A. Singh, R. Ummanni, B. Sridhar, Chem. Commun. 2013, 49, 10109;
-
(2013)
Chem. Commun.
, vol.49
, pp. 10109
-
-
Patil, N.T.1
Konala, A.2
Sravanti, S.3
Singh, A.4
Ummanni, R.5
Sridhar, B.6
-
26
-
-
84881236527
-
-
A. Shakoori, J. B. Bremmer, A. C. Willis, R. Haritakun, P. A. Keller, J. Org. Chem. 2013, 78, 7639;
-
(2013)
J. Org. Chem.
, vol.78
, pp. 7639
-
-
Shakoori, A.1
Bremmer, J.B.2
Willis, A.C.3
Haritakun, R.4
Keller, P.A.5
-
27
-
-
84873899083
-
-
W. Liu, V. Khedkar, B. Baskar, M. Schürmann, K. Kumar, Angew. Chem. 2011, 123, 7032;
-
(2011)
Angew. Chem.
, vol.123
, pp. 7032
-
-
Liu, W.1
Khedkar, V.2
Baskar, B.3
Schürmann, M.4
Kumar, K.5
-
29
-
-
40149091535
-
-
H. Waldmann, M. Kühn, W. Liu, K. Kumar, Chem. Commun. 2008, 1211.
-
(2008)
Chem. Commun.
, pp. 1211
-
-
Waldmann, H.1
Kühn, M.2
Liu, W.3
Kumar, K.4
-
32
-
-
84957925806
-
-
For examples of biologically active, partially saturated carbazoles and pyrido[1,2-a]indoles, see
-
For examples of biologically active, partially saturated carbazoles and pyrido[1,2-a]indoles, see:
-
-
-
-
33
-
-
0037070544
-
-
S. Yokoshima, T. Ueda, S. Kobayashi, A. Sato, T. Kuboyama, H. Tokuyama, T. Fukuyama, J. Am. Chem. Soc. 2002, 124, 2137;
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 2137
-
-
Yokoshima, S.1
Ueda, T.2
Kobayashi, S.3
Sato, A.4
Kuboyama, T.5
Tokuyama, H.6
Fukuyama, T.7
-
34
-
-
84855558725
-
-
D. B. C. Martin, L. Q. Nguyen, C. D. Vanderwal, J. Org. Chem. 2012, 77, 17;
-
(2012)
J. Org. Chem.
, vol.77
, pp. 17
-
-
Martin, D.B.C.1
Nguyen, L.Q.2
Vanderwal, C.D.3
-
35
-
-
79960407415
-
-
S. B. Jones, B. Simmons, A. Mastracchio, D. W. C. MacMillan, Nature 2011, 475, 183;
-
(2011)
Nature
, vol.475
, pp. 183
-
-
Jones, S.B.1
Simmons, B.2
Mastracchio, A.3
MacMillan, D.W.C.4
-
36
-
-
77949853491
-
-
D. Kato, Y. Sasaki, D. L. Boger, J. Am. Chem. Soc. 2010, 132, 3685;
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 3685
-
-
Kato, D.1
Sasaki, Y.2
Boger, D.L.3
-
37
-
-
77957154690
-
-
Y. Sasaki, D. Kato, D. L. Boger, J. Am. Chem. Soc. 2010, 132, 13533;
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 13533
-
-
Sasaki, Y.1
Kato, D.2
Boger, D.L.3
-
38
-
-
84858639723
-
-
D. C. Rogness, N. A. Markina, J. P. Waldo, R. C. Larock, J. Org. Chem. 2012, 77, 2743;
-
(2012)
J. Org. Chem.
, vol.77
, pp. 2743
-
-
Rogness, D.C.1
Markina, N.A.2
Waldo, J.P.3
Larock, R.C.4
-
39
-
-
0023134669
-
-
I. Jirkovsky, G. Santroch, R. Baudy, G. Oshiro, J. Med. Chem. 1987, 30, 388;
-
(1987)
J. Med. Chem.
, vol.30
, pp. 388
-
-
Jirkovsky, I.1
Santroch, G.2
Baudy, R.3
Oshiro, G.4
-
43
-
-
53849099654
-
-
M. Xia, G.-F. Xiang, B. Wu, Y.-F. Han, Adv. Synth. Catal. 2008, 350, 817.
-
(2008)
Adv. Synth. Catal.
, vol.350
, pp. 817
-
-
Xia, M.1
Xiang, G.-F.2
Wu, B.3
Han, Y.-F.4
-
45
-
-
1542499040
-
-
in (Ed.: G. A. Cordell), Academic Press, New York
-
J. Bosch, J. Bonjoch, M. Amat, in The Alkaloids (Ed.:, G. A. Cordell,), Academic Press, New York, 1996, Vol. 48, pp. 75-189;
-
(1996)
The Alkaloids
, vol.48
, pp. 75-189
-
-
Bosch, J.1
Bonjoch, J.2
Amat, M.3
-
46
-
-
84860624351
-
-
A. W. Schmidt, K. R. Reddy, H.-J. Knölker, Chem. Rev. 2012, 112, 3193;
-
(2012)
Chem. Rev.
, vol.112
, pp. 3193
-
-
Schmidt, A.W.1
Reddy, K.R.2
Knölker, H.-J.3
-
47
-
-
84860341545
-
-
W. Maneerat, T. Ritthiwigrom, S. Cheenpracha, T. Promgool, K. Yossathera, S. Deachathai, W. Phakhode, S. Laphookhieo, J. Nat. Prod. 2012, 75, 741;
-
(2012)
J. Nat. Prod.
, vol.75
, pp. 741
-
-
Maneerat, W.1
Ritthiwigrom, T.2
Cheenpracha, S.3
Promgool, T.4
Yossathera, K.5
Deachathai, S.6
Phakhode, W.7
Laphookhieo, S.8
-
49
-
-
70449449626
-
-
C. R. Edwankar, R. V. Edwankar, O. A. Namjoshi, S. K. Rallapappi, S. J. Yang, J. M. Cook, Curr. Opin. Drug Discovery Dev. 2009, 12, 752;
-
(2009)
Curr. Opin. Drug Discovery Dev.
, vol.12
, pp. 752
-
-
Edwankar, C.R.1
Edwankar, R.V.2
Namjoshi, O.A.3
Rallapappi, S.K.4
Yang, S.J.5
Cook, J.M.6
-
51
-
-
84880554396
-
-
C. S. Shanahan, P. Truong, S. M. Mason, J. S. Leszczynski, M. P. Doyle, Org. Lett. 2013, 15, 3642;
-
(2013)
Org. Lett.
, vol.15
, pp. 3642
-
-
Shanahan, C.S.1
Truong, P.2
Mason, S.M.3
Leszczynski, J.S.4
Doyle, M.P.5
-
52
-
-
79958772216
-
-
M. Hussain, S.-M. T. Toguem, R. Ahmad, D. T. Tùng, I. Knepper, A. Villinger, P. Langer, Tetrahedron 2011, 67, 5304;
-
(2011)
Tetrahedron
, vol.67
, pp. 5304
-
-
Hussain, M.1
Toguem, S.-M.T.2
Ahmad, R.3
Tùng, D.T.4
Knepper, I.5
Villinger, A.6
Langer, P.7
-
53
-
-
70349104637
-
-
F. Inagaki, M. Mizutani, N. Kuroda, C. Mukai, J. Org. Chem. 2009, 74, 6402;
-
(2009)
J. Org. Chem.
, vol.74
, pp. 6402
-
-
Inagaki, F.1
Mizutani, M.2
Kuroda, N.3
Mukai, C.4
-
54
-
-
33646449643
-
-
N. Kuroda, Y. Takahashi, K. Yoshinaga, C. Mukai, Org. Lett. 2006, 8, 1843;
-
(2006)
Org. Lett.
, vol.8
, pp. 1843
-
-
Kuroda, N.1
Takahashi, Y.2
Yoshinaga, K.3
Mukai, C.4
-
55
-
-
34250360611
-
-
C. Ferrer, C. H. M. Amijs, A. M. Echavarren, Chem. Eur. J. 2007, 13, 1358;
-
(2007)
Chem. Eur. J.
, vol.13
, pp. 1358
-
-
Ferrer, C.1
Amijs, C.H.M.2
Echavarren, A.M.3
-
56
-
-
85013234016
-
-
R. A. Jones, P. M. Fresneda, T. A. Saliente, J. S. Arques, Tetrahedron 1984, 40, 4837;
-
(1984)
Tetrahedron
, vol.40
, pp. 4837
-
-
Jones, R.A.1
Fresneda, P.M.2
Saliente, T.A.3
Arques, J.S.4
-
58
-
-
84957925807
-
-
2 was excluded from the reaction of 3 n with 4 a to minimize competing hydrolysis of the aldehyde-derived nitrone.
-
2 was excluded from the reaction of 3 n with 4 a to minimize competing hydrolysis of the aldehyde-derived nitrone.
-
-
-
-
59
-
-
84867703800
-
-
See Supporting Information for copper-mediated nitrone synthesis. See the following for related examples of CN bond coupling to form nitrones:, and ref. [5].
-
See Supporting Information for copper-mediated nitrone synthesis. See the following for related examples of CN bond coupling to form nitrones:, D.-L. Mo, D. J. Wink, L. L. Anderson, Org. Lett. 2012, 14, 5180 and ref. [5].
-
(2012)
Org. Lett.
, vol.14
, pp. 5180
-
-
Mo, D.-L.1
Wink, D.J.2
Anderson, L.L.3
-
60
-
-
45949126794
-
-
J. Wilkens, A. Kühling, S. Blechert, Tetrahedron 1987, 43, 3237;
-
(1987)
Tetrahedron
, vol.43
, pp. 3237
-
-
Wilkens, J.1
Kühling, A.2
Blechert, S.3
-
61
-
-
0001264390
-
-
A. Padwa, W. H. Bullock, D. N. Kline, J. Perumattam, J. Org. Chem. 1989, 54, 2862;
-
(1989)
J. Org. Chem.
, vol.54
, pp. 2862
-
-
Padwa, A.1
Bullock, W.H.2
Kline, D.N.3
Perumattam, J.4
-
63
-
-
0004846953
-
-
A. Padwa, S. P. Carter, Y. Chiacchio, D. N. Kline, Tetrahedron Lett. 1986, 27, 2683;
-
(1986)
Tetrahedron Lett.
, vol.27
, pp. 2683
-
-
Padwa, A.1
Carter, S.P.2
Chiacchio, Y.3
Kline, D.N.4
-
64
-
-
0000767607
-
-
A. Padwa, D. N. Kline, K. F. Koehler, M. Matzinger, M. K. Venkatramanan, J. Org. Chem. 1987, 52, 3909;
-
(1987)
J. Org. Chem.
, vol.52
, pp. 3909
-
-
Padwa, A.1
Kline, D.N.2
Koehler, K.F.3
Matzinger, M.4
Venkatramanan, M.K.5
-
65
-
-
0000000529
-
-
A. Padwa, M. Matzinger, Y. Tomioka, M. K. Venkatramanan, J. Org. Chem. 1988, 53, 955.
-
(1988)
J. Org. Chem.
, vol.53
, pp. 955
-
-
Padwa, A.1
Matzinger, M.2
Tomioka, Y.3
Venkatramanan, M.K.4
-
66
-
-
0000452542
-
-
S. P. Modi, A. H. Zayed, S. Archer, J. Org. Chem. 1989, 54, 3084;
-
(1989)
J. Org. Chem.
, vol.54
, pp. 3084
-
-
Modi, S.P.1
Zayed, A.H.2
Archer, S.3
-
67
-
-
0025273229
-
-
M. L. Bennasar, M. Alvarez, R. Lavilla, E. Zulaica, J. Bosch, J. Org. Chem. 1990, 55, 1156;
-
(1990)
J. Org. Chem.
, vol.55
, pp. 1156
-
-
Bennasar, M.L.1
Alvarez, M.2
Lavilla, R.3
Zulaica, E.4
Bosch, J.5
-
69
-
-
1242352444
-
-
J. Zhou, M.-C. Ye, Z.-Z. Huang, Y. Tang, J. Org. Chem. 2004, 69, 1309;
-
(2004)
J. Org. Chem.
, vol.69
, pp. 1309
-
-
Zhou, J.1
Ye, M.-C.2
Huang, Z.-Z.3
Tang, Y.4
-
71
-
-
84957925808
-
-
4 to prevent hydrolysis of the aldehyde-derived nitrones.
-
4 to prevent hydrolysis of the aldehyde-derived nitrones.
-
-
-
-
72
-
-
4644242032
-
-
M. Takemoto, Y. Iwakiri, Y. Suzuki, K. Tanaka, Tetrahedron Lett. 2004, 45, 8061;
-
(2004)
Tetrahedron Lett.
, vol.45
, pp. 8061
-
-
Takemoto, M.1
Iwakiri, Y.2
Suzuki, Y.3
Tanaka, K.4
-
75
-
-
0000690176
-
-
C. A. Mateo, A. Urrutia, J. G. Rodriguez, I. Fonseca, F. H. Cano, J. Org. Chem. 1996, 61, 810;
-
(1996)
J. Org. Chem.
, vol.61
, pp. 810
-
-
Mateo, C.A.1
Urrutia, A.2
Rodriguez, J.G.3
Fonseca, I.4
Cano, F.H.5
-
78
-
-
65449135868
-
-
A. Kapur, K. Kumar, L Singh, P. Singh, M. Elango, V. Subramanian, V. Gupta, P. Kanwal, M. P. S. Ishar, Tetrahedron 2009, 65, 4593.
-
(2009)
Tetrahedron
, vol.65
, pp. 4593
-
-
Kapur, A.1
Kumar, K.2
Singh, L.3
Singh, P.4
Elango, M.5
Subramanian, V.6
Gupta, V.7
Kanwal, P.8
Ishar, M.P.S.9
-
79
-
-
0343923395
-
-
C. F. Gürtler, S. Blechert, E. Steckhan, Chem. Eur. J. 1997, 3, 447;
-
(1997)
Chem. Eur. J.
, vol.3
, pp. 447
-
-
Gürtler, C.F.1
Blechert, S.2
Steckhan, E.3
-
80
-
-
81055144514
-
-
H. Li, N. Boonnak, A. Padwa, J. Org. Chem. 2011, 76, 9488;
-
(2011)
J. Org. Chem.
, vol.76
, pp. 9488
-
-
Li, H.1
Boonnak, N.2
Padwa, A.3
-
81
-
-
80053513724
-
-
S. Chitra, N. Paul, S. Muthusubramanian, P. Manisankar, Green Chem. 2011, 13, 2777.
-
(2011)
Green Chem.
, vol.13
, pp. 2777
-
-
Chitra, S.1
Paul, N.2
Muthusubramanian, S.3
Manisankar, P.4
-
82
-
-
84957925809
-
-
Less than 5 % 1 a - 1 n were separated during purification of 2 a - 2 n indicating that the 2: 1 ratios for all of these reactions were greater than or equal to 10:1.
-
Less than 5 % 1 a-1 n were separated during purification of 2 a-2 n indicating that the 2: 1 ratios for all of these reactions were greater than or equal to 10:1.
-
-
-
-
83
-
-
84957925810
-
-
Less than 5 % 1 o - 1 x, 1 bb were separated during purification of 2 o - 2 x, 2 bb indicating that the 2: 1 ratios for all of these reactions were greater than or equal to 10:1.
-
Less than 5 % 1 o-1 x, 1 bb were separated during purification of 2 o-2 x, 2 bb indicating that the 2: 1 ratios for all of these reactions were greater than or equal to 10:1.
-
-
-
-
84
-
-
84957925811
-
-
Less than 5 % 6 - 8 were separated during purification of 25 - 27 and less than 5 % of the corresponding dihydrocarbazoles were separated from 28 - 32 indicating that the 2: 1 ratios for all of these reactions were greater than or equal to 10:1.
-
Less than 5 % 6-8 were separated during purification of 25-27 and less than 5 % of the corresponding dihydrocarbazoles were separated from 28-32 indicating that the 2: 1 ratios for all of these reactions were greater than or equal to 10:1.
-
-
-
-
85
-
-
84957925812
-
-
Irrespective of the reaction media, amide substitution on the allene strongly favors the formation of dihydropyridoindoles, and mixtures of 1 and 2 were even observed when these reagents were subjected to toluene-mediated reaction conditions previously optimized for dihydrocarbazole synthesis.
-
Irrespective of the reaction media, amide substitution on the allene strongly favors the formation of dihydropyridoindoles, and mixtures of 1 and 2 were even observed when these reagents were subjected to toluene-mediated reaction conditions previously optimized for dihydrocarbazole synthesis.
-
-
-
-
86
-
-
78649598117
-
-
For examples of 1,4-additions of β-diesters to α,β-unsaturated imines, see.
-
For examples of 1,4-additions of β-diesters to α,β-unsaturated imines, see:, F. Palacios, A. M. Ochoa de Retana, S. Pascual, G. Fernández de Trocõniz, J. M. Ezpeleta, Eur. J. Org. Chem. 2010, 6618.
-
(2010)
Eur. J. Org. Chem.
, pp. 6618
-
-
Palacios, F.1
Ochoa De Retana, A.M.2
Pascual, S.3
Fernández De Trocõniz, G.4
Ezpeleta, J.M.5
-
87
-
-
84957925813
-
-
1H NMR spectrum. Dihydrocarbazoles 1 that have been prepared from ketone-derived nitrones are stable in air at 25 °C and only begin to oxidize slowly to the corresponding carbazoles at higher temperatures (5-10 % after 18 h at 80 °C). Dihydrocarbazoles 1 that have been prepared from aldehyde-derived nitrones are stable at -40 °C but slowly oxidize at 25 °C in air and more quickly at higher temperatures (∼50 % after 18 h at 80 °C). Dihydropyridoindoles 2 show no sign of oxidation when heated in air for 18 h at 80 °C.
-
1H NMR spectrum. Dihydrocarbazoles 1 that have been prepared from ketone-derived nitrones are stable in air at 25 °C and only begin to oxidize slowly to the corresponding carbazoles at higher temperatures (5-10 % after 18 h at 80 °C). Dihydrocarbazoles 1 that have been prepared from aldehyde-derived nitrones are stable at -40 °C but slowly oxidize at 25 °C in air and more quickly at higher temperatures (∼50 % after 18 h at 80 °C). Dihydropyridoindoles 2 show no sign of oxidation when heated in air for 18 h at 80 °C.
-
-
-
|