메뉴 건너뛰기




Volumn 30, Issue 3, 2016, Pages 681-710

Syndromic surveillance of Flu on Twitter using weakly supervised temporal topic models

Author keywords

Hidden Markov model; Social media; Syndromic surveillance; Topic model

Indexed keywords

ARTIFICIAL INTELLIGENCE; FILE EDITORS; FORECASTING; HIDDEN MARKOV MODELS; LEARNING SYSTEMS; MARKOV PROCESSES; MONITORING;

EID: 84941008120     PISSN: 13845810     EISSN: 1573756X     Source Type: Journal    
DOI: 10.1007/s10618-015-0434-x     Document Type: Article
Times cited : (57)

References (42)
  • 1
    • 79960609227 scopus 로고    scopus 로고
    • IEEE conference on computer communications workshops (INFOCOM WKSHPS)
    • Achrekar H, Gandhe A, Lazarus R, Yu S-H, and Liu B (2011) Predicting flu trends using twitter data. In: 2011 IEEE conference on computer communications workshops (INFOCOM WKSHPS). pp 702–707
    • (2011) pp 702–707
    • Achrekar, H.1    Gandhe, A.2    Lazarus, R.3    Yu, S.-H.4
  • 3
    • 79951540883 scopus 로고    scopus 로고
    • The hidden markov topic model: a probabilistic model of semantic representation
    • Andrews M, Vigliocco G (2010) The hidden markov topic model: a probabilistic model of semantic representation. Top Cogn Sci 2(1):101–113
    • (2010) Top Cogn Sci , vol.2 , Issue.1 , pp. 101-113
    • Andrews, M.1    Vigliocco, G.2
  • 4
    • 80053290412 scopus 로고    scopus 로고
    • Twitter catches the flu: detecting influenza epidemics using twitter. In: Proceedings of the conference on empirical methods in natural language processing (EMNLP ’11)
    • Aramaki E, Maskawa S, Morita M (2011) Twitter catches the flu: detecting influenza epidemics using twitter. In: Proceedings of the conference on empirical methods in natural language processing (EMNLP ’11). pp 1568–1576
    • (2011) pp 1568–1576
    • Aramaki, E.1    Maskawa, S.2    Morita, M.3
  • 5
    • 0029190838 scopus 로고
    • Global stability of an SIR epidemic model with time delays
    • Beretta E, Takeuchi Y (1995) Global stability of an SIR epidemic model with time delays. J Math Biol 33(3):250–260
    • (1995) J Math Biol , vol.33 , Issue.3 , pp. 250-260
    • Beretta, E.1    Takeuchi, Y.2
  • 6
    • 84881055593 scopus 로고    scopus 로고
    • A hidden Markov model variant for sequence classification. In: The 21nd international joint conference on artificial intelligence
    • Blasiak S, Rangwala H (2011) A hidden Markov model variant for sequence classification. In: The 21nd international joint conference on artificial intelligence. pp 1192–1197
    • (2011) pp 1192–1197
    • Blasiak, S.1    Rangwala, H.2
  • 8
    • 33749242628 scopus 로고    scopus 로고
    • Dynamic topic models. In: The 23rd international conference on machine learning
    • Blei D, Lafferty J (2006) Dynamic topic models. In: The 23rd international conference on machine learning. pp 113–120
    • (2006) pp 113–120
    • Blei, D.1    Lafferty, J.2
  • 10
    • 84896063387 scopus 로고    scopus 로고
    • Towards understanding global spread of disease from everyday interpersonal interactions. In: Proceedings of the 23rd international joint conference on artificial intelligence. AAAI Press
    • Brennan SP, Sadilek A, Kautz HA (2013) Towards understanding global spread of disease from everyday interpersonal interactions. In: Proceedings of the 23rd international joint conference on artificial intelligence. AAAI Press, pp 2783–2789
    • (2013) pp 2783–2789
    • Brennan, S.P.1    Sadilek, A.2    Kautz, H.A.3
  • 11
    • 84873655668 scopus 로고    scopus 로고
    • When Google got Flu wrong
    • Butler D (2013) When Google got Flu wrong. Nature 494(7436):155–156
    • (2013) Nature , vol.494 , Issue.7436 , pp. 155-156
    • Butler, D.1
  • 14
    • 77958594601 scopus 로고    scopus 로고
    • Social network sensors for early detection of contagious outbreaks
    • Christakis NA, Fowler JH (2010) Social network sensors for early detection of contagious outbreaks. PLoS One 5(9):e12948
    • (2010) PLoS One , vol.5 , Issue.9 , pp. e12948
    • Christakis, N.A.1    Fowler, J.H.2
  • 15
    • 57349194232 scopus 로고    scopus 로고
    • Robust dynamic classes revealed by measuring the response function of a social system
    • Crane R, Sornette D (2008) Robust dynamic classes revealed by measuring the response function of a social system. Proc Natl Acad Sci 105(41):15649–15653
    • (2008) Proc Natl Acad Sci , vol.105 , Issue.41 , pp. 15649-15653
    • Crane, R.1    Sornette, D.2
  • 16
    • 79956040653 scopus 로고    scopus 로고
    • Towards detecting influenza epidemics by analyzing twitter messages. In: Proceedings of the first workshop on social media analytics. ACM
    • Culotta A (2010) Towards detecting influenza epidemics by analyzing twitter messages. In: Proceedings of the first workshop on social media analytics. ACM, pp 115–122
    • (2010) pp 115–122
    • Culotta, A.1
  • 18
    • 84871857815 scopus 로고    scopus 로고
    • Blogpulse: automated trend discovery for weblogs. WWW 2004 workshop on the weblogging ecosystem: aggregation
    • Glance N, Hurst M, Tomokiyo T (2004) Blogpulse: automated trend discovery for weblogs. WWW 2004 workshop on the weblogging ecosystem: aggregation, analysis and dynamics
    • (2004) analysis and dynamics
    • Glance, N.1    Hurst, M.2    Tomokiyo, T.3
  • 19
    • 78049522900 scopus 로고    scopus 로고
    • Hidden topic markov models. In: International conference on artificial intelligence and statistics
    • Gruber A, Weiss Y, Rosen-Zvi M (2007) Hidden topic markov models. In: International conference on artificial intelligence and statistics. pp 163–170
    • (2007) pp 163–170
    • Gruber, A.1    Weiss, Y.2    Rosen-Zvi, M.3
  • 20
    • 0034486891 scopus 로고    scopus 로고
    • The mathematics of infectious diseases
    • Hethcote HW (2000) The mathematics of infectious diseases. Soc Ind Appl Math SIAM Rev 42(4):599–653
    • (2000) Soc Ind Appl Math SIAM Rev , vol.42 , Issue.4 , pp. 599-653
    • Hethcote, H.W.1
  • 21
    • 80052655724 scopus 로고    scopus 로고
    • Tracking trends: incorporating term volume into temporal topic models. In: the 17th ACM SIGKDD international conference on knowledge discovery and data mining
    • Hong L, Yin D, Guo J, Davison B (2011) Tracking trends: incorporating term volume into temporal topic models. In: the 17th ACM SIGKDD international conference on knowledge discovery and data mining. pp 484–492
    • (2011) pp 484–492
    • Hong, L.1    Yin, D.2    Guo, J.3    Davison, B.4
  • 22
    • 0027305851 scopus 로고
    • The stochastic SI model with recruitment and deaths I. Comparison with the closed SIS model
    • Jacquez J, Simon C (1993) The stochastic SI model with recruitment and deaths I. Comparison with the closed SIS model. Math Biosci 117(1):77–125
    • (1993) Math Biosci , vol.117 , Issue.1 , pp. 77-125
    • Jacquez, J.1    Simon, C.2
  • 23
    • 84923276281 scopus 로고    scopus 로고
    • Separating fact from fear: tracking flu infections on twitter. In: North American chapter of the association for computational linguistics (NAACL)
    • Lamb A, Paul MJ, Dredze M (2013) Separating fact from fear: tracking flu infections on twitter. In: North American chapter of the association for computational linguistics (NAACL). pp 789–795
    • (2013) pp 789–795
    • Lamb, A.1    Paul, M.J.2    Dredze, M.3
  • 24
    • 84867410703 scopus 로고    scopus 로고
    • Nowcasting events from the social web with statistical learning
    • Lampos V, Cristianini N (2012) Nowcasting events from the social web with statistical learning. ACM Trans Intell Syst Technol 3(4):72
    • (2012) ACM Trans Intell Syst Technol , vol.3 , Issue.4 , pp. 72
    • Lampos, V.1    Cristianini, N.2
  • 26
    • 84896056107 scopus 로고    scopus 로고
    • The parable of google flu: traps in big data analysis
    • Lazer DM, Kennedy R, King G, Vespignani A (2014) The parable of google flu: traps in big data analysis. Science 343(6176):1203–1205
    • (2014) Science , vol.343 , Issue.6176 , pp. 1203-1205
    • Lazer, D.M.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 29
    • 0028817626 scopus 로고
    • Global stability for the seir model in epidemiology
    • Li M, Muldowney J (1995) Global stability for the seir model in epidemiology. Math Biosci 125(2):155–164
    • (1995) Math Biosci , vol.125 , Issue.2 , pp. 155-164
    • Li, M.1    Muldowney, J.2
  • 30
    • 84866023367 scopus 로고    scopus 로고
    • Rise and fall patterns of information diffusion: model and implications. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining (KDD ’12)
    • Matsubara Y, Sakurai Y, Prakash BA, Li L, Faloutsos C (2012) Rise and fall patterns of information diffusion: model and implications. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining (KDD ’12). pp 6–14
    • (2012) pp 6–14
    • Matsubara, Y.1    Sakurai, Y.2    Prakash, B.A.3    Li, L.4    Faloutsos, C.5
  • 31
    • 84962514140 scopus 로고    scopus 로고
    • Epidemic disease database
    • PAHO (2012). Epidemic disease database, pan american health organization. http://www.ais.paho.org/phip/viz/ed_flu.asp
    • (2012) pan american health organization
  • 33
    • 84877736971 scopus 로고    scopus 로고
    • A two-dimensional topic-aspect model for discovering multi-faceted topics
    • Paul M, Girju R (2010) A two-dimensional topic-aspect model for discovering multi-faceted topics. Urbana 51:61801
    • (2010) Urbana , vol.51 , pp. 61801
    • Paul, M.1    Girju, R.2
  • 34
    • 84873450362 scopus 로고    scopus 로고
    • Kleinberg J (2011) Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter
    • ACM, New York
    • Romero DM, Meeder B, Kleinberg J (2011) Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th international conference on world wide web (WWW ’11). ACM, New York. pp 695–704
    • Proceedings of the 20th international conference on world wide web (WWW ’11) , pp. 695-704
    • Romero, D.M.1    Meeder, B.2
  • 37
    • 12244288622 scopus 로고    scopus 로고
    • Probabilistic author-topic models for information discovery. In: The 10th ACM SIGKDD international conference on knowledge discovery and data mining
    • Steyvers M, Smyth P, Rosen-Zvi M, Griffiths T (2004) Probabilistic author-topic models for information discovery. In: The 10th ACM SIGKDD international conference on knowledge discovery and data mining. pp 306–315
    • (2004) pp 306–315
    • Steyvers, M.1    Smyth, P.2    Rosen-Zvi, M.3    Griffiths, T.4
  • 38
    • 33749565782 scopus 로고    scopus 로고
    • Topics over time: a non-Markov continuous-time model of topical trends. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining (KDD ’06)
    • Wang X, McCallum A (2006) Topics over time: a non-Markov continuous-time model of topical trends. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining (KDD ’06). pp 424–433
    • (2006) pp 424–433
    • Wang, X.1    McCallum, A.2
  • 39
    • 79952376390 scopus 로고    scopus 로고
    • Patterns of temporal variation in online media. In: Proceedings of the fourth ACM international conference on web search and data mining. ACM
    • Yang J, Leskovec J (2011) Patterns of temporal variation in online media. In: Proceedings of the fourth ACM international conference on web search and data mining. ACM. pp 177–186
    • (2011) pp 177–186
    • Yang, J.1    Leskovec, J.2
  • 40
    • 85009897315 scopus 로고    scopus 로고
    • Finding progression stages in time-evolving event sequences. In: Proceedings of the 23rd international conference on world wide web (WWW ’14)
    • Yang J, McAuley J, Leskovec J, LePendu P, Shah N (2014a) Finding progression stages in time-evolving event sequences. In: Proceedings of the 23rd international conference on world wide web (WWW ’14). pp 783–794
    • (2014) pp 783–794
    • Yang, J.1    McAuley, J.2    Leskovec, J.3    LePendu, P.4    Shah, N.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.