-
1
-
-
77950940282
-
FLDA: Matrix factorization through Latent Dirichlet Allocation
-
New York, NY, USA, ACM
-
D. Agarwal and B.-C. Chen. fLDA: matrix factorization through Latent Dirichlet Allocation. In Proceedings of the third ACM International Conference on Web Search and Data Mining (WSDM), pages 91-100, New York, NY, USA, 2010. ACM.
-
(2010)
Proceedings of the Third ACM International Conference on Web Search and Data Mining (WSDM)
, pp. 91-100
-
-
Agarwal, D.1
Chen, B.-C.2
-
6
-
-
84863381525
-
Reading tea leaves: How humans interpret topic models
-
J. Boyd-Graber, J. Chang, S. Gerrish, C. Wang, and D. Blei. Reading Tea Leaves: How Humans Interpret Topic Models. In Neural Information Processing Systems (NIPS), 2009.
-
(2009)
Neural Information Processing Systems (NIPS)
-
-
Boyd-Graber, J.1
Chang, J.2
Gerrish, S.3
Wang, C.4
Blei, D.5
-
8
-
-
85162005069
-
Online learning for latent dirichlet allocation
-
In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors
-
M. Hoffman, D. Blei, and F. Bach. Online learning for latent dirichlet allocation. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 856-864, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 856-864
-
-
Hoffman, M.1
Blei, D.2
Bach, F.3
-
10
-
-
77954607567
-
Trend detection model
-
New York, NY, USA, ACM
-
N. Kawamae and R. Higashinaka. Trend detection model. In Proceedings of the 19th International Conference on World Wide Web (WWW), pages 1129-1130, New York, NY, USA, 2010. ACM.
-
(2010)
Proceedings of the 19th International Conference on World Wide Web (WWW)
, pp. 1129-1130
-
-
Kawamae, N.1
Higashinaka, R.2
-
12
-
-
74549123327
-
Dynamic hyperparameter optimization for Bayesian topical trend analysis
-
T. Masada, D. Fukagawa, A. Takasu, T. Hamada, Y. Shibata, and K. Oguri. Dynamic hyperparameter optimization for Bayesian topical trend analysis. In Proceeding of the 18th ACM Conference on Information and Knowledge Management (CIKM), 2009.
-
(2009)
Proceeding of the 18th ACM Conference on Information and Knowledge Management (CIKM)
-
-
Masada, T.1
Fukagawa, D.2
Takasu, A.3
Hamada, T.4
Shibata, Y.5
Oguri, K.6
-
16
-
-
0002537923
-
Estimation of parameters and eigenmodes of multivariate autoregressive models
-
DOI 10.1145/382043.382304
-
A. Neumaier and T. Schneider. Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27:27-57, March 2001. (Pubitemid 33609114)
-
(2001)
ACM Transactions on Mathematical Software
, vol.27
, Issue.1
, pp. 27-57
-
-
Neumaier, A.1
Schneider, T.2
-
17
-
-
85162073174
-
Word features for latent dirichlet allocation
-
In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors
-
J. Petterson, A. Smola, T. Caetano, W. Buntine, and S. Narayanamurthy. Word features for latent dirichlet allocation. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 1921-1929. 2010.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 1921-1929
-
-
Petterson, J.1
Smola, A.2
Caetano, T.3
Buntine, W.4
Narayanamurthy, S.5
-
18
-
-
80053392186
-
Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora
-
Singapore, August, Association for Computational Linguistics
-
D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 248-256, Singapore, August 2009. Association for Computational Linguistics.
-
(2009)
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing
, pp. 248-256
-
-
Ramage, D.1
Hall, D.2
Nallapati, R.3
Manning, C.D.4
-
24
-
-
33750327222
-
LDA-based document models for ad-hoc retrieval
-
New York, NY, USA, ACM
-
X. Wei and W. B. Croft. LDA-based document models for ad-hoc retrieval. In Proceedings of the 29th annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 178-185, New York, NY, USA, 2006. ACM.
-
(2006)
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 178-185
-
-
Wei, X.1
Croft, W.B.2
-
26
-
-
71149117321
-
MedLDA: Maximum margin supervised topic models for regression and classification
-
New York, NY, USA, ACM
-
J. Zhu, A. Ahmed, and E. P. Xing. MedLDA: maximum margin supervised topic models for regression and classification. In Proceedings of the 26th Annual International Conference on Machine Learning (ICML), pages 1257-1264, New York, NY, USA, 2009. ACM.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning (ICML)
, pp. 1257-1264
-
-
Zhu, J.1
Ahmed, A.2
Xing, E.P.3
|