메뉴 건너뛰기




Volumn 27, Issue 6, 2010, Pages 55-65

Probabilistic topic models

Author keywords

[No Author keywords available]

Indexed keywords

STATISTICS;

EID: 85032751708     PISSN: 10535888     EISSN: None     Source Type: Journal    
DOI: 10.1109/MSP.2010.938079     Document Type: Article
Times cited : (330)

References (66)
  • 2
    • 0001218562 scopus 로고
    • The statistical analysis of compositional data
    • J. Aitchison, "The statistical analysis of compositional data," J. R. Statist. Soc., Ser. B, vol. 44, no. 2, pp. 139-177, 1982.
    • (1982) J. R. Statist. Soc., Ser. B , vol.44 , Issue.2 , pp. 139-177
    • Aitchison, J.1
  • 5
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
    • C. E. Antoniak, "Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems," Ann. Statist., vol. 2, no. 6, pp. 1152-1174, 1974.
    • (1974) Ann. Statist. , vol.2 , Issue.6 , pp. 1152-1174
    • Antoniak, C.E.1
  • 7
    • 84898991735 scopus 로고    scopus 로고
    • VIBES: A variational inference engine for Bayesian networks
    • S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge, MA: MIT Press
    • C. Bishop, D. Spiegelhalter, and J. Winn, "VIBES: A variational inference engine for Bayesian networks," in Advances in Neural Information Processing Systems, vol. 15, S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge, MA: MIT Press, 2003, pp. 777-784.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 777-784
    • Bishop, C.1    Spiegelhalter, D.2    Winn, J.3
  • 11
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for Dirichlet process mixtures
    • D. Blei and M. Jordan, "Variational inference for Dirichlet process mixtures," Bayesian Anal., vol. 1, no. 1, pp. 121-144, 2006.
    • (2006) Bayesian Anal. , vol.1 , Issue.1 , pp. 121-144
    • Blei, D.1    Jordan, M.2
  • 13
    • 76249118968 scopus 로고    scopus 로고
    • Topic models
    • A. Srivastava and M. Sahami, Eds. New York: Taylor & Francis
    • D. Blei and J. Lafferty, "Topic models," in Text Mining: Theory and Applications, A. Srivastava and M. Sahami, Eds. New York: Taylor & Francis, 2009.
    • (2009) Text Mining: Theory and Applications
    • Blei, D.1    Lafferty, J.2
  • 15
    • 0141607824 scopus 로고    scopus 로고
    • Latent Dirichlet allocation
    • Mar.
    • D. Blei, A. Ng, and M. I. Jordan, "Latent Dirichlet allocation," J. Mach. Learn. Res., vol. 3, pp. 993-1022, Mar. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.I.3
  • 17
    • 77952563025 scopus 로고    scopus 로고
    • Variational inference for large-scale models of discrete choice
    • M. Braun and J. McAuliffe, "Variational inference for large-scale models of discrete choice," J. Amer. Statist. Assoc., pp. 324-335, 2010.
    • (2010) J. Amer. Statist. Assoc. , pp. 324-335
    • Braun, M.1    McAuliffe, J.2
  • 19
    • 50649087214 scopus 로고    scopus 로고
    • Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes
    • L. Cao and L. Fei-Fei, "Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes," in Proc. Int. Conf. Computer Vision, 2007.
    • (2007) Proc. Int. Conf. Computer Vision
    • Cao, L.1    Fei-Fei, L.2
  • 20
    • 85032784130 scopus 로고    scopus 로고
    • J. Chang. [Online]
    • J. Chang. [Online]. Available: http://cran.r-project.org/web/packages/ lda/
  • 21
    • 78650096781 scopus 로고    scopus 로고
    • Hierarchical relational models for document networks
    • J. Chang and D. Blei, "Hierarchical relational models for document networks," Ann. Appl. Statist., vol. 4, no. 1, 2010.
    • Ann. Appl. Statist. , vol.4 , Issue.1 , pp. 2010
    • Chang, J.1    Blei, D.2
  • 22
    • 84863381525 scopus 로고    scopus 로고
    • Reading tea leaves: How humans interpret topic models
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, Eds.
    • J. Chang, J. Boyd-Graber, S. Gerrish, C. Wang, and D. Blei, "Reading tea leaves: How humans interpret topic models," in Advances in Neural Information Processing Systems, vol. 22, Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, Eds. 2009, pp. 288-296.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 288-296
    • Chang, J.1    Boyd-Graber, J.2    Gerrish, S.3    Wang, C.4    Blei, D.5
  • 25
    • 34247150414 scopus 로고    scopus 로고
    • Bayesian estimation of the grade of membership model
    • E. Erosheva, "Bayesian estimation of the grade of membership model," in Bayesian Statistics. vol. 7, pp. 501-510, 2003.
    • (2003) Bayesian Statistics. , vol.7 , pp. 501-510
    • Erosheva, E.1
  • 26
    • 52949126188 scopus 로고    scopus 로고
    • Describing disability through individual-level mixture models for multivariate binary data
    • E. Erosheva, S. Fienberg, and C. Joutard, "Describing disability through individual-level mixture models for multivariate binary data," Ann. Appl. Statist., 2007.
    • (2007) Ann. Appl. Statist.
    • Erosheva, E.1    Fienberg, S.2    Joutard, C.3
  • 27
    • 0015310384 scopus 로고
    • The sampling theory of selective neutral alleles
    • W. Ewens, "The sampling theory of selective neutral alleles," Theor. Popul. Biol., vol. 3, pp. 87-112, 1972.
    • (1972) Theor. Popul. Biol. , vol.3 , pp. 87-112
    • Ewens, W.1
  • 29
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • T. Ferguson, "A Bayesian analysis of some nonparametric problems," Ann. Statist., vol. 1, no. 2, pp. 209-230, 1973.
    • (1973) Ann. Statist. , vol.1 , Issue.2 , pp. 209-230
    • Ferguson, T.1
  • 33
  • 37
    • 70450219021 scopus 로고    scopus 로고
    • Towards total scene understanding: Classification, annotation and segmentation in an automatic framework
    • J. Li, R. Socher, and L. Fei-Fei, "Towards total scene understanding: Classification, annotation and segmentation in an automatic framework," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009.
    • (2009) Proc. IEEE Conf. Computer Vision and Pattern Recognition
    • Li, J.1    Socher, R.2    Fei-Fei, L.3
  • 38
    • 85032769212 scopus 로고    scopus 로고
    • [Online]
    • A. McCallum. [Online]. Available: http://mallet.cs.umass.edu
    • McCallum, A.1
  • 39
    • 77951202623 scopus 로고    scopus 로고
    • Topic models conditioned on arbitrary features with Dirichlet-multinomial regression
    • D. Mimno and A. McCallum, "Topic models conditioned on arbitrary features with Dirichlet-multinomial regression," in Proc. Uncertainty in Artificial Intelligence, 2008.
    • (2008) Proc. Uncertainty in Artificial Intelligence
    • Mimno, D.1    McCallum, A.2
  • 41
    • 84924603283 scopus 로고    scopus 로고
    • P. Muller, S. Walker, N. Hjort, C. Holmes, Eds. Cambridge, U.K.: Cambridge Univ. Press
    • P. Muller, S. Walker, N. Hjort, C. Holmes, Eds., Bayesian Nonparametrics. Cambridge, U.K.: Cambridge Univ. Press, 2010.
    • (2010) Bayesian Nonparametrics
  • 45
    • 0242641721 scopus 로고    scopus 로고
    • Combinatorial Stochastic Processes
    • New York NY: Springer -Verlag
    • J. Pitman, Combinatorial Stochastic Processes (Lect. Notes for St. Flour Summer School). New York, NY: Springer-Verlag, 2002.
    • (2002) Lect. Notes for St. Flour Summer School
    • Pitman, J.1
  • 46
    • 0034118493 scopus 로고    scopus 로고
    • Inference of population structure using multilocus genotype data
    • June
    • J. Pritchard, M. Stephens, and P. Donnelly, "Inference of population structure using multilocus genotype data," Genetics, vol. 155, pp. 945-959, June 2000.
    • (2000) Genetics , vol.155 , pp. 945-959
    • Pritchard, J.1    Stephens, M.2    Donnelly, P.3
  • 48
    • 77958118345 scopus 로고    scopus 로고
    • Spatial normalized gamma processes
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, Eds.
    • V. Rao and Y. W. Teh, "Spatial normalized gamma processes," in Advances in Neural Information Processing Systems, vol. 22, Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, Eds. 2009, pp. 1554-1562.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1554-1562
    • Rao, V.1    Teh, Y.W.2
  • 52
    • 48349148541 scopus 로고    scopus 로고
    • Probabilistic topic models
    • T. Landauer D. McNamara, S. Dennis, and W. Kintsch, Eds. Lawrence Erlbaum
    • M. Steyvers and T. Griffiths, "Probabilistic topic models," in Latent Semantic Analysis: A Road to Meaning, T. Landauer, D. McNamara, S. Dennis, and W. Kintsch, Eds. Lawrence Erlbaum, 2006.
    • (2006) Latent Semantic Analysis: A Road to Meaning
    • Steyvers, M.1    Griffiths, T.2
  • 54
    • 33749249312 scopus 로고    scopus 로고
    • Hierarchical Dirichlet processes
    • Y. Teh, M. Jordan, M. Beal, and D. Blei, "Hierarchical Dirichlet processes," J. Acoust. Soc. Amer., vol. 101, no. 476, pp. 1566-1582, 2005.
    • (2005) J. Acoust. Soc. Amer. , vol.101 , Issue.476 , pp. 1566-1582
    • Teh, Y.1    Jordan, M.2    Beal, M.3    Blei, D.4
  • 61
    • 63849117955 scopus 로고    scopus 로고
    • Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models
    • X. Wang, X. Ma, and E. Grimson, "Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models," IEEE Trans. Pattern Anal. Machine Intell., 2009.
    • (2009) IEEE Trans. Pattern Anal. Machine Intell.
    • Wang, X.1    Ma, X.2    Grimson, E.3
  • 62
    • 33749565782 scopus 로고    scopus 로고
    • Topics over time: A non-Markov continuous-time model of topical trends
    • ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining
    • X. Wang and A. McCallum, "Topics over time: A non-Markov continuous-time model of topical trends," in Proc. 12th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2006, pp. 424-433.
    • (2006) Proc. 12th , pp. 424-433
    • Wang, X.1    McCallum, A.2
  • 64
    • 0003751465 scopus 로고    scopus 로고
    • Bayesian forecasting and dynamic models
    • New York: Springer-Verlag
    • M. West and J. Harrison, "Bayesian forecasting and dynamic models," in Proc. Int. Conf. Machine Learning. New York: Springer-Verlag, 1997.
    • (1997) Proc. Int. Conf. Machine Learning
    • West, M.1    Harrison, J.2
  • 65
    • 72849143525 scopus 로고    scopus 로고
    • Multi-modal hierarchical Dirichlet process model for predicting image annotation and image-object label correspondence
    • O. Yakhnenko and V. Honavar, "Multi-modal hierarchical Dirichlet process model for predicting image annotation and image-object label correspondence," in Proc. SIAM Conf. Data Mining (SDM'09), 2009.
    • (2009) Proc. SIAM Conf. Data Mining (SDM'09)
    • Yakhnenko, O.1    Honavar, V.2
  • 66
    • 79955691941 scopus 로고    scopus 로고
    • Parallel inference for latent Dirichlet allocation on graphics processing units
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, Eds.
    • F. Yan, N. Xu, and Y. Qi, "Parallel inference for latent Dirichlet allocation on graphics processing units," in Advances in Neural Information Processing Systems, vol. 22, Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, Eds. 2009, pp. 2134-2142.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 2134-2142
    • Yan, F.1    Xu, N.2    Qi, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.