메뉴 건너뛰기




Volumn 2015-January, Issue January, 2014, Pages 755-760

Flu Gone Viral: Syndromic Surveillance of Flu on Twitter Using Temporal Topic Models

Author keywords

Data Mining; Epidemiology; Social Media; Syndromic Surveillance; Topic Model; Twitter

Indexed keywords

DATA MINING; EPIDEMIOLOGY; FORECASTING; MONITORING; SOCIAL NETWORKING (ONLINE);

EID: 84936930986     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2014.137     Document Type: Conference Paper
Times cited : (49)

References (27)
  • 2
    • 79951540883 scopus 로고    scopus 로고
    • The hidden markov topic model: A probabilistic model of semantic representation
    • M. Andrews and G. Vigliocco. The Hidden Markov Topic Model: A Probabilistic Model of Semantic Representation. Topics in Cognitive Science, 2(1):101-113, 2010.
    • (2010) Topics in Cognitive Science , vol.2 , Issue.1 , pp. 101-113
    • Andrews, M.1    Vigliocco, G.2
  • 3
    • 0029190838 scopus 로고
    • Global sta bility of an sir epidemic model with time delays
    • E. Beretta and Y. Takeuchi. Global Sta bility of an SIR Epidemic Model with Time Delays. The Journal of mathematical biology, 33(3):250-260, 1995.
    • (1995) The Journal of Mathematical Biology , vol.33 , Issue.3 , pp. 250-260
    • Beretta, E.1    Takeuchi, Y.2
  • 4
    • 33749242628 scopus 로고    scopus 로고
    • Dynamic topic models
    • D. Blei and J. Lafferty. Dynamic Topic Models. In In ICML, pages 113-120, 2006.
    • (2006) ICML , pp. 113-120
    • Blei, D.1    Lafferty, J.2
  • 6
    • 84873655668 scopus 로고    scopus 로고
    • When google got f lu wrong
    • D. Butler. When Google got F lu Wrong. Nature, 494(7436):155-156, 2013.
    • (2013) Nature , vol.494 , Issue.7436 , pp. 155-156
    • Butler, D.1
  • 8
    • 77958594601 scopus 로고    scopus 로고
    • Social networ k sensors for early detection of contagious outbreaks
    • N. Christakis and J. Fowler. Social Networ k Sensors for Early Detection of Contagious Outbreaks. PLoS ONE, (9), 09 2010.
    • (2010) PLoS ONE , vol.9 , Issue.9
    • Christakis, N.1    Fowler, J.2
  • 9
    • 57349194232 scopus 로고    scopus 로고
    • Robust dynamic classes revealed by measuring the response function of a social system
    • R. Crane and D. Sornette. Robust Dynamic Classes Revealed by Measuring the Response Function of a Social System. In PNAS, 2008.
    • (2008) PNAS
    • Crane, R.1    Sornette, D.2
  • 10
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • J. Ginsberg, M. Mohebbi, R. Patel, L. Brammer, M. Smolinski, and L. Brilliant. Detecting Influenza Epidemics using Search Engine Query Data. Nature, 457(7232):1012-1014, 2008.
    • (2008) Nature , vol.457 , Issue.7232 , pp. 1012-1014
    • Ginsberg, J.1    Mohebbi, M.2    Patel, R.3    Brammer, L.4    Smolinski, M.5    Brilliant, L.6
  • 12
    • 0034486891 scopus 로고    scopus 로고
    • The mathematics o f infectious diseases
    • H. W. Hethcote. The mathematics o f infectious diseases. SIAM Review, 42, 2000.
    • (2000) SIAM Review , vol.42
    • Hethcote, H.W.1
  • 13
    • 80052655724 scopus 로고    scopus 로고
    • Tracking trends: Incorporating term volume into temporal topic models
    • L. Hong, D. Yin, J. Guo, and B. Davison. Tracking Trends: Incorporating Term Volume into Temporal Topic Models. In the 17th ACM SIGKDD, pages 484-492, 2011.
    • (2011) The 17th ACM SIGKDD , pp. 484-492
    • Hong, L.1    Yin, D.2    Guo, J.3    Davison, B.4
  • 14
    • 0027305851 scopus 로고
    • The stochastic si model with recruitment and deaths i. Comparison with the closed sis model
    • J. Jacquez and C. Simon. The Stochastic SI Model with Recruitment and Deaths I. Comparison with the Closed SIS Model. Mathematical Biosciences, 117(1):77-125, 1993.
    • (1993) Mathematical Biosciences , vol.117 , Issue.1 , pp. 77-125
    • Jacquez, J.1    Simon, C.2
  • 17
    • 84896056107 scopus 로고    scopus 로고
    • The parable of google flu: Traps in big data analysis
    • D. Lazer, R. Kennedy, G. King, and A. Vespignani. The parable of google flu: Traps in big data analysis. Science, 343(6176):1203-1205, 2014.
    • (2014) Science , vol.343 , Issue.6176 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 19
    • 0028817626 scopus 로고
    • Global stability for the seir model in epidemiology
    • M. Li and J. Muldowney. Global stability for the SEIR model in epidemiology. Mathematical Biosciences, 125(2):155-164, 1995.
    • (1995) Mathematical Biosciences , vol.125 , Issue.2 , pp. 155-164
    • Li, M.1    Muldowney, J.2
  • 23
    • 84873450362 scopus 로고    scopus 로고
    • Differences in the mechanics o f information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter
    • D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics o f information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In Proceedings of the 20th international conference on World wide web, pages 695-704, 2011.
    • (2011) Proceedings of the 20th International Conference on World Wide Web , pp. 695-704
    • Romero, D.M.1    Meeder, B.2    Kleinberg, J.3
  • 25
    • 33749565782 scopus 로고    scopus 로고
    • Topics over time: A non-markov c ontinuous-time model of topical trends
    • X. Wang and A. McCallum. Topics Over Time: a non-Markov C ontinuous-time Model of Topical Trends. In the 12th ACM SIGKDD, pages 424-433, 2006.
    • (2006) The 12th ACM SIGKDD , pp. 424-433
    • Wang, X.1    McCallum, A.2
  • 26
    • 79952376390 scopus 로고    scopus 로고
    • Patterns of temporal variation in online media
    • J. Yang and J. Leskovec. Patterns of temporal variation in online media. In WSDM, pages 177-186, 2011.
    • (2011) WSDM , pp. 177-186
    • Yang, J.1    Leskovec, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.