-
1
-
-
79960609227
-
Predicting flu trends using twitter data
-
IEEE
-
H. Achrekar, A. Gandhe, R. Lazarus, S.-H. Yu, and B. Liu. Predicting Flu Trends using Twitter Data. In IEEE Conference on Computer Communications Workshops, pages 702-707. IEEE, 2011.
-
(2011)
IEEE Conference on Computer Communications Workshops
, pp. 702-707
-
-
Achrekar, H.1
Gandhe, A.2
Lazarus, R.3
Yu, S.-H.4
Liu, B.5
-
2
-
-
79951540883
-
The hidden markov topic model: A probabilistic model of semantic representation
-
M. Andrews and G. Vigliocco. The Hidden Markov Topic Model: A Probabilistic Model of Semantic Representation. Topics in Cognitive Science, 2(1):101-113, 2010.
-
(2010)
Topics in Cognitive Science
, vol.2
, Issue.1
, pp. 101-113
-
-
Andrews, M.1
Vigliocco, G.2
-
3
-
-
0029190838
-
Global sta bility of an sir epidemic model with time delays
-
E. Beretta and Y. Takeuchi. Global Sta bility of an SIR Epidemic Model with Time Delays. The Journal of mathematical biology, 33(3):250-260, 1995.
-
(1995)
The Journal of Mathematical Biology
, vol.33
, Issue.3
, pp. 250-260
-
-
Beretta, E.1
Takeuchi, Y.2
-
4
-
-
33749242628
-
Dynamic topic models
-
D. Blei and J. Lafferty. Dynamic Topic Models. In In ICML, pages 113-120, 2006.
-
(2006)
ICML
, pp. 113-120
-
-
Blei, D.1
Lafferty, J.2
-
6
-
-
84873655668
-
When google got f lu wrong
-
D. Butler. When Google got F lu Wrong. Nature, 494(7436):155-156, 2013.
-
(2013)
Nature
, vol.494
, Issue.7436
, pp. 155-156
-
-
Butler, D.1
-
7
-
-
84924813547
-
Forecasting a moving target: Ensemble models for ili case count predictions. in
-
P. Chakraborty, P. Khadivi, B. Lewis, A. Mahendiran, J. Chen, P. Butler, E. Nsoesie, S. Mekaru, J. Brownstein, M. Marathe, and N. Ramakrishnan. Forecasting a Moving Target: Ensemble Models for ILI Case Count Predictions. In SIAM International Conference on Data Mining, 2014.
-
(2014)
SIAM International Conference on Data Mining
-
-
Chakraborty, P.1
Khadivi, P.2
Lewis, B.3
Mahendiran, A.4
Chen, J.5
Butler, P.6
Nsoesie, E.7
Mekaru, S.8
Brownstein, J.9
Marathe, M.10
Ramakrishnan, N.11
-
8
-
-
77958594601
-
Social networ k sensors for early detection of contagious outbreaks
-
N. Christakis and J. Fowler. Social Networ k Sensors for Early Detection of Contagious Outbreaks. PLoS ONE, (9), 09 2010.
-
(2010)
PLoS ONE
, vol.9
, Issue.9
-
-
Christakis, N.1
Fowler, J.2
-
9
-
-
57349194232
-
Robust dynamic classes revealed by measuring the response function of a social system
-
R. Crane and D. Sornette. Robust Dynamic Classes Revealed by Measuring the Response Function of a Social System. In PNAS, 2008.
-
(2008)
PNAS
-
-
Crane, R.1
Sornette, D.2
-
10
-
-
60549098239
-
Detecting influenza epidemics using search engine query data
-
J. Ginsberg, M. Mohebbi, R. Patel, L. Brammer, M. Smolinski, and L. Brilliant. Detecting Influenza Epidemics using Search Engine Query Data. Nature, 457(7232):1012-1014, 2008.
-
(2008)
Nature
, vol.457
, Issue.7232
, pp. 1012-1014
-
-
Ginsberg, J.1
Mohebbi, M.2
Patel, R.3
Brammer, L.4
Smolinski, M.5
Brilliant, L.6
-
12
-
-
0034486891
-
The mathematics o f infectious diseases
-
H. W. Hethcote. The mathematics o f infectious diseases. SIAM Review, 42, 2000.
-
(2000)
SIAM Review
, vol.42
-
-
Hethcote, H.W.1
-
13
-
-
80052655724
-
Tracking trends: Incorporating term volume into temporal topic models
-
L. Hong, D. Yin, J. Guo, and B. Davison. Tracking Trends: Incorporating Term Volume into Temporal Topic Models. In the 17th ACM SIGKDD, pages 484-492, 2011.
-
(2011)
The 17th ACM SIGKDD
, pp. 484-492
-
-
Hong, L.1
Yin, D.2
Guo, J.3
Davison, B.4
-
14
-
-
0027305851
-
The stochastic si model with recruitment and deaths i. Comparison with the closed sis model
-
J. Jacquez and C. Simon. The Stochastic SI Model with Recruitment and Deaths I. Comparison with the Closed SIS Model. Mathematical Biosciences, 117(1):77-125, 1993.
-
(1993)
Mathematical Biosciences
, vol.117
, Issue.1
, pp. 77-125
-
-
Jacquez, J.1
Simon, C.2
-
16
-
-
77958047753
-
Flu detector: Tracking epidemics on twitter
-
V. Lampos, T. De Bie, and N. Cristianini. Flu detector: Tracking epidemics on twitter. In Proceedings of the 2010 European Conference on Machine Learning and Knowledge Discovery in Databases: Part III, ECML PKDD'10, pages 599-602, 2010.
-
(2010)
Proceedings of the 2010 European Conference on Machine Learning and Knowledge Discovery in Databases: Part III, ECML PKDD'10
, pp. 599-602
-
-
Lampos, V.1
De Bie, T.2
Cristianini, N.3
-
17
-
-
84896056107
-
The parable of google flu: Traps in big data analysis
-
D. Lazer, R. Kennedy, G. King, and A. Vespignani. The parable of google flu: Traps in big data analysis. Science, 343(6176):1203-1205, 2014.
-
(2014)
Science
, vol.343
, Issue.6176
, pp. 1203-1205
-
-
Lazer, D.1
Kennedy, R.2
King, G.3
Vespignani, A.4
-
19
-
-
0028817626
-
Global stability for the seir model in epidemiology
-
M. Li and J. Muldowney. Global stability for the SEIR model in epidemiology. Mathematical Biosciences, 125(2):155-164, 1995.
-
(1995)
Mathematical Biosciences
, vol.125
, Issue.2
, pp. 155-164
-
-
Li, M.1
Muldowney, J.2
-
20
-
-
84866023367
-
Rise and fall patterns of information diffusion: Model and implications
-
Y. Matsubara, Y. Sakurai, B. A. Prakash, L. Li, and C. Faloutsos. Rise and fall patterns of information diffusion: model and implications. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '12, p ages 6-14, 2012.
-
(2012)
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
, vol.12
, pp. 6-14
-
-
Matsubara, Y.1
Sakurai, Y.2
Prakash, B.A.3
Li, L.4
Faloutsos, C.5
-
23
-
-
84873450362
-
Differences in the mechanics o f information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter
-
D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics o f information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In Proceedings of the 20th international conference on World wide web, pages 695-704, 2011.
-
(2011)
Proceedings of the 20th International Conference on World Wide Web
, pp. 695-704
-
-
Romero, D.M.1
Meeder, B.2
Kleinberg, J.3
-
25
-
-
33749565782
-
Topics over time: A non-markov c ontinuous-time model of topical trends
-
X. Wang and A. McCallum. Topics Over Time: a non-Markov C ontinuous-time Model of Topical Trends. In the 12th ACM SIGKDD, pages 424-433, 2006.
-
(2006)
The 12th ACM SIGKDD
, pp. 424-433
-
-
Wang, X.1
McCallum, A.2
-
26
-
-
79952376390
-
Patterns of temporal variation in online media
-
J. Yang and J. Leskovec. Patterns of temporal variation in online media. In WSDM, pages 177-186, 2011.
-
(2011)
WSDM
, pp. 177-186
-
-
Yang, J.1
Leskovec, J.2
-
27
-
-
84907032880
-
Finding progression stages in time-evolving event sequences
-
J. Yang, J. McAuley, J. Leskovec, P. LePendu, and N. Shah. Finding progression stages in time-evolving event sequences. In the 23rd International Conference on World Wide Web, pages 783-794, 2014.
-
(2014)
The 23rd International Conference on World Wide Web
, pp. 783-794
-
-
Yang, J.1
McAuley, J.2
Leskovec, J.3
Lependu, P.4
Shah, N.5
|