메뉴 건너뛰기




Volumn 125, Issue , 2016, Pages 1107-1118

Gradient-based MCMC samplers for dynamic causal modelling

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ALGORITHM; ARTICLE; CALCULATION; GEOMETRY; MARKOV CHAIN; MATHEMATICAL ANALYSIS; MATHEMATICAL MODEL; MONTE CARLO METHOD; NEURAL MASS MODEL; PRIORITY JOURNAL; SCORING SYSTEM; SIMULATION; BAYES THEOREM; COMPARATIVE STUDY; COMPUTER ASSISTED DIAGNOSIS; HUMAN; NEUROIMAGING; PROCEDURES; THEORETICAL MODEL;

EID: 84940870400     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2015.07.043     Document Type: Article
Times cited : (39)

References (49)
  • 2
    • 3543081155 scopus 로고    scopus 로고
    • Variational Algorithms for Approximate Bayesian Inference
    • (PhD thesis) University College London
    • Beal, M.J., Variational Algorithms for Approximate Bayesian Inference. (PhD thesis), 2003, University College London.
    • (2003)
    • Beal, M.J.1
  • 3
    • 84888355781 scopus 로고    scopus 로고
    • Optimal tuning of the hybrid Monte Carlo algorithm
    • Beskos, Alexandros, Pillai, Natesh, Roberts, Gareth, Sanz-Serna, Jesus-Maria, Stuart, Andrew, Optimal tuning of the hybrid Monte Carlo algorithm. Bernoulli 19:5A (2013), 1501–1534.
    • (2013) Bernoulli , vol.19 , Issue.5A , pp. 1501-1534
    • Beskos, A.1    Pillai, N.2    Roberts, G.3    Sanz-Serna, J.-M.4    Stuart, A.5
  • 4
    • 84885878770 scopus 로고    scopus 로고
    • The geometry of Hamiltonian Monte Carlo
    • (arXiv:1112.4118)
    • Betancourt, Michael, Stein, Leo C., The geometry of Hamiltonian Monte Carlo. 2011 (arXiv:1112.4118).
    • (2011)
    • Betancourt, M.1    Stein, L.C.2
  • 5
    • 84962893190 scopus 로고    scopus 로고
    • Optimizing the integrator step size for Hamiltonian Monte Carlo
    • (arXiv:1411.6669)
    • Betancourt, Michael, Byrne, Simon, Girolami, Mark, Optimizing the integrator step size for Hamiltonian Monte Carlo. 2015 (arXiv:1411.6669).
    • (2015)
    • Betancourt, M.1    Byrne, S.2    Girolami, M.3
  • 6
    • 84989782263 scopus 로고    scopus 로고
    • The geometric foundations of Hamiltonian Monte Carlo
    • (under review)
    • Betancourt, Michael, Byrne, Simon, Livingstone, Sam, Girolami, Mark, The geometric foundations of Hamiltonian Monte Carlo. Stat. Sci., 2015 (under review).
    • (2015) Stat. Sci.
    • Betancourt, M.1    Byrne, S.2    Livingstone, S.3    Girolami, M.4
  • 8
    • 84888128895 scopus 로고    scopus 로고
    • Geodesic Monte Carlo on embedded manifolds
    • Byrne, Simon, Girolami, Mark, Geodesic Monte Carlo on embedded manifolds. Scand. J. Stat. 40:4 (2013), 825–845.
    • (2013) Scand. J. Stat. , vol.40 , Issue.4 , pp. 825-845
    • Byrne, S.1    Girolami, M.2
  • 9
    • 35148901069 scopus 로고    scopus 로고
    • A Metropolis–Hastings algorithm for dynamic causal models
    • Chumbley, Justin R., Friston, Karl J., Fearn, Tom, Kiebel, Stefan J., A Metropolis–Hastings algorithm for dynamic causal models. NeuroImage 38:3 (2007), 478–487.
    • (2007) NeuroImage , vol.38 , Issue.3 , pp. 478-487
    • Chumbley, J.R.1    Friston, K.J.2    Fearn, T.3    Kiebel, S.J.4
  • 10
    • 0004116989 scopus 로고    scopus 로고
    • Introduction to Algorithms
    • 2nd edition McGraw-Hill Higher Education
    • Cormen, Thomas H., Stein, Clifford, Rivest, Ronald L., Leiserson, Charles E., Introduction to Algorithms. 2nd edition, 2001, McGraw-Hill Higher Education 0070131511.
    • (2001)
    • Cormen, T.H.1    Stein, C.2    Rivest, R.L.3    Leiserson, C.E.4
  • 11
    • 0030539336 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo convergence diagnostics: A comparative review
    • Cowles, M.K., Carlin, B.P., Markov Chain Monte Carlo convergence diagnostics: A comparative review. J. Am. Stat. Assoc. 91:434 (1996), 883–904.
    • (1996) J. Am. Stat. Assoc. , vol.91 , Issue.434 , pp. 883-904
    • Cowles, M.K.1    Carlin, B.P.2
  • 12
    • 33745183321 scopus 로고    scopus 로고
    • Mechanisms of evoked and induced responses in MEG/EEG
    • David, Olivier, Kilner, James M., Friston, Karl J., Mechanisms of evoked and induced responses in MEG/EEG. NeuroImage 31:4 (2006), 1580–1591.
    • (2006) NeuroImage , vol.31 , Issue.4 , pp. 1580-1591
    • David, O.1    Kilner, J.M.2    Friston, K.J.3
  • 14
    • 76749113376 scopus 로고    scopus 로고
    • Statistically optimal perception and learning: from behavior to neural representations
    • (Mar)
    • Fiser, József, Berkes, Pietro, Orbán, Gergo, Lengyel, Máté, Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn. Sci. 14:3 (2010), 119–130 (Mar).
    • (2010) Trends Cogn. Sci. , vol.14 , Issue.3 , pp. 119-130
    • Fiser, J.1    Berkes, P.2    Orbán, G.3    Lengyel, M.4
  • 16
    • 0041924877 scopus 로고    scopus 로고
    • Dynamic causal modelling
    • Friston, K.J., Harrison, L., Penny, W., Dynamic causal modelling. NeuroImage 19:4 (2003), 1273–1302.
    • (2003) NeuroImage , vol.19 , Issue.4 , pp. 1273-1302
    • Friston, K.J.1    Harrison, L.2    Penny, W.3
  • 17
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, Andrew, Rubin, Donald B., Inference from iterative simulation using multiple sequences. Stat. Sci. 7:4 (1992), 457–472.
    • (1992) Stat. Sci. , vol.7 , Issue.4 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 18
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to calculating posterior moments
    • J.M. Bernardo J. Berger A.P. Dawid J.F.M. Smith Oxford University Press Oxford
    • Geweke, J., Evaluating the accuracy of sampling-based approaches to calculating posterior moments. Bernardo, J.M., Berger, J., Dawid, A.P., Smith, J.F.M., (eds.) Bayesian Statistics 4, 1992, Oxford University Press, Oxford, 169–193.
    • (1992) Bayesian Statistics 4 , pp. 169-193
    • Geweke, J.1
  • 19
    • 84972511893 scopus 로고
    • Practical Markov Chain Monte Carlo
    • Geyer, Charles J., Practical Markov Chain Monte Carlo. Stat. Sci. 08834237, 7(4), 1992, 473–483.
    • (1992) Stat. Sci. , vol.7 , Issue.4 , pp. 473-483
    • Geyer, C.J.1
  • 20
    • 79952295497 scopus 로고    scopus 로고
    • Riemann manifold Langevin and Hamiltonian Monte Carlo methods
    • (03)
    • Girolami, Mark, Calderhead, Ben, Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. Ser. B 73:2 (2011), 123–214 (03).
    • (2011) J. R. Stat. Soc. Ser. B , vol.73 , Issue.2 , pp. 123-214
    • Girolami, M.1    Calderhead, B.2
  • 21
    • 0004236492 scopus 로고    scopus 로고
    • Matrix Computations
    • 3rd ed. Johns Hopkins University Press Baltimore, MD, USA
    • Golub, Gene H., Van Loan, Charles F., Matrix Computations. 3rd ed., 2012, Johns Hopkins University Press, Baltimore, MD, USA.
    • (2012)
    • Golub, G.H.1    Van Loan, C.F.2
  • 22
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario, H., Saksman, E., Tamminen, J., An adaptive Metropolis algorithm. Bernoulli 7:2 (2001), 223–242.
    • (2001) Bernoulli , vol.7 , Issue.2 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 24
    • 28944439329 scopus 로고    scopus 로고
    • User Documentation for CVODES, and ODE Solver with Sensitivity Analysis Capabilities
    • Centre for Applied Scientific Computing, Lawrence Livermore National Laboratory
    • Hindmarsh, A., Serban, R., User Documentation for CVODES, and ODE Solver with Sensitivity Analysis Capabilities. Technical Report, 2002, Centre for Applied Scientific Computing, Lawrence Livermore National Laboratory.
    • (2002) Technical Report
    • Hindmarsh, A.1    Serban, R.2
  • 25
    • 84901687683 scopus 로고    scopus 로고
    • The No-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
    • Hoffman, Matthew D., Gelman, Andrew, The No-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15:1 (2014), 1593–1623.
    • (2014) J. Mach. Learn. Res. , vol.15 , Issue.1 , pp. 1593-1623
    • Hoffman, M.D.1    Gelman, A.2
  • 26
    • 84969229610 scopus 로고    scopus 로고
    • Stochastic Analysis on Manifolds. Graduate Studies in Mathematics
    • American Mathematical Society Providence, RI
    • Hsu, Elton P., Stochastic Analysis on Manifolds. Graduate Studies in Mathematics. 2002, American Mathematical Society, Providence, RI.
    • (2002)
    • Hsu, E.P.1
  • 28
    • 85045318750 scopus 로고    scopus 로고
    • Spherical Hamiltonian Monte Carlo for constrained target distributions
    • Lan, Shiwei, Zhou, Bo, Shahbaba, Babak, Spherical Hamiltonian Monte Carlo for constrained target distributions. ICML, vol. 31, 2014, 629–637.
    • (2014) ICML , vol.31 , pp. 629-637
    • Lan, S.1    Zhou, B.2    Shahbaba, B.3
  • 29
    • 28844494719 scopus 로고    scopus 로고
    • Simulating Hamiltonian dynamics
    • Cambridge University Press
    • Leimkuhler, B., Reich, Sebastian, Simulating Hamiltonian dynamics. 2004, Cambridge University Press.
    • (2004)
    • Leimkuhler, B.1    Reich, S.2
  • 30
    • 84940084249 scopus 로고    scopus 로고
    • Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions
    • Livingstone, S., Girolami, M., Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions. Entropy 16 (2014), 3074–3102.
    • (2014) Entropy , vol.16 , pp. 3074-3102
    • Livingstone, S.1    Girolami, M.2
  • 31
    • 0030551974 scopus 로고    scopus 로고
    • Rates of convergence of the Hastings and Metropolis algorithms
    • Mengersen, K.L., Tweedie, R.L., Rates of convergence of the Hastings and Metropolis algorithms. Ann. Stat. 1 (1996), 101–121.
    • (1996) Ann. Stat. , vol.1 , pp. 101-121
    • Mengersen, K.L.1    Tweedie, R.L.2
  • 32
    • 0002702476 scopus 로고
    • The imbedding problem for Riemannian manifolds
    • Nash, John, The imbedding problem for Riemannian manifolds. Ann. Math. 63:1 (1956), 20–63.
    • (1956) Ann. Math. , vol.63 , Issue.1 , pp. 20-63
    • Nash, J.1
  • 34
    • 0003982971 scopus 로고    scopus 로고
    • Numerical Optimization
    • 2nd edition Springer New York
    • Nocedal, J., Wright, S.J., Numerical Optimization. 2nd edition, 2006, Springer, New York.
    • (2006)
    • Nocedal, J.1    Wright, S.J.2
  • 35
    • 77949374261 scopus 로고    scopus 로고
    • Adaptively scaling the Metropolis algorithm using expected squared jumped distance
    • Pasarica, Cristian, Gelman, Andrew, Adaptively scaling the Metropolis algorithm using expected squared jumped distance. Stat. Sin. 20 (2010), 343–364.
    • (2010) Stat. Sin. , vol.20 , pp. 343-364
    • Pasarica, C.1    Gelman, A.2
  • 37
    • 0000759236 scopus 로고
    • How many iterations in the Gibbs sampler?
    • Oxford University Press
    • Raftery, Adrian E., Lewis, Steven, How many iterations in the Gibbs sampler?. Bayesian Statistics 4, 1992, Oxford University Press, 763–773.
    • (1992) Bayesian Statistics 4 , pp. 763-773
    • Raftery, A.E.1    Lewis, S.2
  • 38
    • 25444448065 scopus 로고    scopus 로고
    • Gaussian Processes for Machine Learning
    • The MIT Press
    • Rasmussen, Carl Edward, Williams, Christopher K.I., Gaussian Processes for Machine Learning. 2005, The MIT Press.
    • (2005)
    • Rasmussen, C.E.1    Williams, C.K.I.2
  • 39
    • 84977551116 scopus 로고    scopus 로고
    • Monte Carlo Statistical Methods
    • Springer-Verlag New York, Inc. Secaucus, NJ, USA
    • Robert, Christian P., Casella, George, Monte Carlo Statistical Methods. 2005, Springer-Verlag New York, Inc., Secaucus, NJ, USA 0387212396.
    • (2005)
    • Robert, C.P.1    Casella, G.2
  • 40
    • 85132364916 scopus 로고    scopus 로고
    • Exponential convergence of Langevin distributions and their discrete approximations
    • Roberts, G., Tweedie, R., Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2:4 (1996), 341–363.
    • (1996) Bernoulli , vol.2 , Issue.4 , pp. 341-363
    • Roberts, G.1    Tweedie, R.2
  • 41
    • 84904092156 scopus 로고    scopus 로고
    • Efficient gradient computation for dynamical models
    • Sengupta, B., Friston, K.J., Penny, W.D., Efficient gradient computation for dynamical models. NeuroImage 98 (2014), 521–527.
    • (2014) NeuroImage , vol.98 , pp. 521-527
    • Sengupta, B.1    Friston, K.J.2    Penny, W.D.3
  • 43
    • 84937764183 scopus 로고    scopus 로고
    • Gradient-free MCMC methods for dynamic causal modelling
    • (Mar)
    • Sengupta, Biswa, Friston, Karl J., Penny, Will D., Gradient-free MCMC methods for dynamic causal modelling. NeuroImage 15:112 (2015), 375–381 (Mar).
    • (2015) NeuroImage , vol.15 , Issue.112 , pp. 375-381
    • Sengupta, B.1    Friston, K.J.2    Penny, W.D.3
  • 44
    • 77956501313 scopus 로고    scopus 로고
    • Gaussian process optimization in the bandit setting: No regret and experimental design
    • Srinivas, Niranjan, Krause, Andreas, Kakade, Sham, Seeger, Matthias, Gaussian process optimization in the bandit setting: No regret and experimental design. ICML, vol. 27, 2010, 1015–1022.
    • (2010) ICML , vol.27 , pp. 1015-1022
    • Srinivas, N.1    Krause, A.2    Kakade, S.3    Seeger, M.4
  • 45
    • 84860236413 scopus 로고    scopus 로고
    • Information-theoretic regret bounds for Gaussian process optimization in the bandit setting
    • Srinivas, Niranjan, Krause, Andreas, Kakade, Sham, Seeger, Matthias, Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theory 58:5 (2012), 3250–3265.
    • (2012) IEEE Trans. Inf. Theory , vol.58 , Issue.5 , pp. 3250-3265
    • Srinivas, N.1    Krause, A.2    Kakade, S.3    Seeger, M.4
  • 46
    • 85003226669 scopus 로고    scopus 로고
    • Stan Modeling Language Users Guide and Reference Manual, Version 2.5.0
    • Stan Development Team, Stan Modeling Language Users Guide and Reference Manual, Version 2.5.0. 2014.
    • (2014)
    • Stan Development Team1
  • 47
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • Wainwright, Martin J., Jordan, Michael I., Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1935-8237, 1(1-2), 2008, 1–305.
    • (2008) Found. Trends Mach. Learn. , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 48
    • 84919794312 scopus 로고    scopus 로고
    • Adaptive Hamiltonian and Riemann manifold Monte Carlo
    • Wang, Ziyu, Mohamed, Shakir, de Freitas, Nando, Adaptive Hamiltonian and Riemann manifold Monte Carlo. ICML, vol. 28, 2013, 1462–1470.
    • (2013) ICML , vol.28 , pp. 1462-1470
    • Wang, Z.1    Mohamed, S.2    de Freitas, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.