메뉴 건너뛰기




Volumn 60, Issue 7-8, 2015, Pages 1242-1265

Feed-forward vs recurrent neural network models for non-stationarity modelling using data assimilation and adaptivity;Modèles de réseaux de neurones récurrents vs non-récurrents pour la modélisation non-stationnaire utilisant l’assimilation des données et l’adaptabilité

Author keywords

adaptivity; data assimilation; neural network model; non stationarity

Indexed keywords

CLIMATE CHANGE; NEURAL NETWORKS; WATERSHEDS;

EID: 84940580679     PISSN: 02626667     EISSN: 21503435     Source Type: Journal    
DOI: 10.1080/02626667.2014.967696     Document Type: Article
Times cited : (27)

References (40)
  • 1
    • 84869173608 scopus 로고    scopus 로고
    • Flash flood forecasting in poorly gauged basins using neural networks: case study of the Gardon de Mialet basin (southern France)
    • G.Artigue,, et al., 2012. Flash flood forecasting in poorly gauged basins using neural networks: case study of the Gardon de Mialet basin (southern France). Natural Hazards and Earth System Sciences, 12, 3307–3324. doi:10.5194/nhess-12-3307-2012
    • (2012) Natural Hazards and Earth System Sciences , vol.12 , pp. 3307-3324
    • Artigue, G.1
  • 2
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • A.R.Barron,, 1993. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39, 930–945. doi:10.1109/18.256500
    • (1993) IEEE Transactions on Information Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 4
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • G.J.Bowden,, H.R.Maier,, and G.C.Dandy,, 2002. Optimal division of data for neural network models in water resources applications. Water Resources Research, 38 (2), 2–11. doi:10.1029/2001WR000266
    • (2002) Water Resources Research , vol.38 , Issue.2 , pp. 2-11
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 5
    • 0032829433 scopus 로고    scopus 로고
    • Hydrological forecasting using artificial neural networks: the state of the art
    • P.Coulibaly,, F.Anctil,, and B.Bobée,, 1999. Hydrological forecasting using artificial neural networks: the state of the art. Canada Journal of Civil Engineering, 26 (3), 293–304. doi:10.1139/l98-069
    • (1999) Canada Journal of Civil Engineering , vol.26 , Issue.3 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 6
    • 0034298548 scopus 로고    scopus 로고
    • A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff
    • P.Coulibaly,, et al., 2000. A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff. Hydrological Processes, 14 (15), 2755–2777. doi:10.1002/1099-1085(20001030)14:15<2755::AID-HYP90>3.0.CO;2-9
    • (2000) Hydrological Processes , vol.14 , Issue.15 , pp. 2755-2777
    • Coulibaly, P.1
  • 7
    • 19744362941 scopus 로고    scopus 로고
    • Nonstationary hydrological time series forecasting using nonlinear dynamic methods
    • P.Coulibaly, and C.K.Baldwin,, 2005. Nonstationary hydrological time series forecasting using nonlinear dynamic methods. Journal of Hydrology, 307 (1–4), 164–174. doi:10.1016/j.jhydrol.2004.10.008
    • (2005) Journal of Hydrology , vol.307 , Issue.1-4 , pp. 164-174
    • Coulibaly, P.1    Baldwin, C.K.2
  • 10
    • 84940581413 scopus 로고
    • Centroid lag time changes resulting from harvesting, herbiciding, and stand conversion
    • American Water Resources Association
    • P.J.Edwards, and F.Wood,, 1994. Centroid lag time changes resulting from harvesting, herbiciding, and stand conversion. In: Effects of human-induced changes on hydrologic systems symposium proceedings. American Water Resources Association, 727–734.
    • (1994) In: Effects of human-induced changes on hydrologic systems symposium proceedings , pp. 727-734
    • Edwards, P.J.1    Wood, F.2
  • 11
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • S.Geman,, E.Bienenstock,, and R.Doursat,, 1992. Neural networks and the bias/variance dilemma. Neural Computation, 4 (1), 1–58. doi:10.1162/neco.1992.4.1.1
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 14
    • 0029252331 scopus 로고
    • Nonlinear adaptive prediction of nonstationary signals
    • S.Haykin, and L.Li,, 1995. Nonlinear adaptive prediction of nonstationary signals. IEEETransactionson Signal Processing, 43 (2), 526–535. doi:10.1109/78.348134
    • (1995) IEEETransactionson Signal Processing , vol.43 , Issue.2 , pp. 526-535
    • Haykin, S.1    Li, L.2
  • 15
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K.Hornik,, M.Stinchcombe,, and H.White,, 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359–366. doi:10.1016/0893-6080(89)90020-8
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 16
    • 79957530212 scopus 로고    scopus 로고
    • Neural networks: from black box towards transparent box. Application to evapotranspiration modeling
    • A.Johannet,, B.Vayssade,, and D.Bertin,, 2008. Neural networks: from black box towards transparent box. Application to evapotranspiration modeling. International Journal of Computational Intelligence, 4 (3), 163–170.
    • (2008) International Journal of Computational Intelligence , vol.4 , Issue.3 , pp. 163-170
    • Johannet, A.1    Vayssade, B.2    Bertin, D.3
  • 17
    • 79957515465 scopus 로고    scopus 로고
    • Complexity selection of a neural network model for karst flood forecasting: the case of the Lez basin (southern France)
    • L.Kong-A-Siou,, et al., 2011. Complexity selection of a neural network model for karst flood forecasting: the case of the Lez basin (southern France). Journal of Hydrology, 403, 367–380. doi:10.1016/j.jhydrol.2011.04.015
    • (2011) Journal of Hydrology , vol.403 , pp. 367-380
    • Kong-A-Siou, L.1
  • 18
    • 84859101501 scopus 로고    scopus 로고
    • Optimization of the generalization capability for rainfall-runoff modeling by neural networks: the case of the Lez aquifer (southern France)
    • L.Kong-A-Siou,, et al., 2012. Optimization of the generalization capability for rainfall-runoff modeling by neural networks: the case of the Lez aquifer (southern France). Environmental Earth Sciences, 65 (8), 2365–2375. doi:10.1007/s12665-011-1450-9
    • (2012) Environmental Earth Sciences , vol.65 , Issue.8 , pp. 2365-2375
    • Kong-A-Siou, L.1
  • 19
    • 84887187683 scopus 로고    scopus 로고
    • KnoX method, or Knowledge eXtraction from neural network model. Case study on the Lez karst aquifer (southern France)
    • L.Kong-A-Siou,, et al., 2013. KnoX method, or Knowledge eXtraction from neural network model. Case study on the Lez karst aquifer (southern France). Journal of Hydrology, 507, 19–32. doi:10.1016/j.jhydrol.2013.10.011
    • (2013) Journal of Hydrology , vol.507 , pp. 19-32
    • Kong-A-Siou, L.1
  • 20
    • 79955896476 scopus 로고    scopus 로고
    • Influence of spatial discretization, underground water storage and glacier melt on a physically-based hydrological model of the Upper Durance River basin
    • M.Lafaysse,, et al., 2011. Influence of spatial discretization, underground water storage and glacier melt on a physically-based hydrological model of the Upper Durance River basin. Journal of Hydrology, 403 (1–2), 116–129. doi:10.1016/j.jhydrol.2011.03.046
    • (2011) Journal of Hydrology , vol.403 , Issue.1-2 , pp. 116-129
    • Lafaysse, M.1
  • 21
    • 84976403108 scopus 로고
    • Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects
    • F.X.Le Dimet, and O.Talagrand,, 1986. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus, 38A, 97–110. doi:10.1111/j.1600-0870.1986.tb00459.x
    • (1986) Tellus , vol.38A , pp. 97-110
    • Le Dimet, F.X.1    Talagrand, O.2
  • 24
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • H.R.Maier, and G.C.Dandy,, 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software, 15 (1), 101–124. doi:10.1016/S1364-8152(99)00007-9
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 25
    • 0021550463 scopus 로고
    • Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale
    • A.Mangin,, 1984. Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale. Journal of Hydrology, 67 (1–4), 25–43. doi:10.1016/0022-1694(84)90230-0
    • (1984) Journal of Hydrology , vol.67 , Issue.1-4 , pp. 25-43
    • Mangin, A.1
  • 26
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I—a discussion of principles
    • J.E.Nash, and J.V.Sutcliffe,, 1970. River flow forecasting through conceptual models part I—a discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
    • (1970) Journal of Hydrology , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 27
    • 0001382203 scopus 로고
    • Neural networks and nonlinear adaptive filtering: unifying concepts and new algorithms
    • O.Nerrand,, et al., 1993. Neural networks and nonlinear adaptive filtering: unifying concepts and new algorithms. Neural Computation, 5 (2), 165–199. doi:10.1162/neco.1993.5.2.165
    • (1993) Neural Computation , vol.5 , Issue.2 , pp. 165-199
    • Nerrand, O.1
  • 28
    • 14644403067 scopus 로고    scopus 로고
    • Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2—towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling
    • L.Oudin,, et al., 2005. Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2—towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. Journal of Hydrology, 303, 290–306. doi:10.1016/j.jhydrol.2004.08.026
    • (2005) Journal of Hydrology , vol.303 , pp. 290-306
    • Oudin, L.1
  • 29
    • 28844493616 scopus 로고    scopus 로고
    • Modeling a densely urbanized watershed with an artificial neural network, weather radar and telemetric data
    • A.J.Pereira Filho, and C.C.Dos Santos,, 2006. Modeling a densely urbanized watershed with an artificial neural network, weather radar and telemetric data. Journal of Hydrology, 317 (1–2), 31–48. doi:10.1016/j.jhydrol.2005.05.007
    • (2006) Journal of Hydrology , vol.317 , Issue.1-2 , pp. 31-48
    • Pereira Filho, A.J.1    Dos Santos, C.C.2
  • 30
    • 84856218849 scopus 로고    scopus 로고
    • A review of efficiency criteria suitable for evaluating low-flow simulations
    • R.Pushpalatha,, et al., 2012. A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology, 420–421, 171–182. doi:10.1016/j.jhydrol.2011.11.055
    • (2012) Journal of Hydrology , vol.420-421 , pp. 171-182
    • Pushpalatha, R.1
  • 31
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • D.E.Rumelhart,, G.E.Hintont,, and R.J.Williams,, 1986. Learning representations by backpropagating errors. Nature, 323 (6088), 533–536. doi:10.1038/323533a0
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hintont, G.E.2    Williams, R.J.3
  • 32
    • 0029483769 scopus 로고
    • Nonlinear black-box modeling in system identification: a unified overview
    • J.Sjöberg,, et al., 1995. Nonlinear black-box modeling in system identification: a unified overview. Automatica, 31 (12), 1691–1724. doi:10.1016/0005-1098(95)00120-8
    • (1995) Automatica , vol.31 , Issue.12 , pp. 1691-1724
    • Sjöberg, J.1
  • 35
    • 84940614144 scopus 로고    scopus 로고
    • Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments
    • G.Thirel,, et al., 2015. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments. Hydrological Sciences Journal, 60 (7–8), doi:10.1080/02626667.2014.967248
    • (2015) Hydrological Sciences Journal , vol.60 , Issue.7-8
    • Thirel, G.1
  • 36
    • 78049398451 scopus 로고    scopus 로고
    • Flash flood forecasting by statistical learning in the absence of rainfall forecast: a case study
    • M.Toukourou,, A.Johannet,, and G.Dreyfus,, 2009. Flash flood forecasting by statistical learning in the absence of rainfall forecast: a case study. Engineering Applications of Neural Networks, 43, 98–107. doi:10.1007/978-3-642-03969-0_10
    • (2009) Engineering Applications of Neural Networks , vol.43 , pp. 98-107
    • Toukourou, M.1    Johannet, A.2    Dreyfus, G.3
  • 37
    • 80052966658 scopus 로고    scopus 로고
    • Rainfall-runoff modeling of flash floods in the absence of rainfall forecasts: the case of “Cévenol flash floods
    • M.Toukourou,, et al., 2011. Rainfall-runoff modeling of flash floods in the absence of rainfall forecasts: the case of “Cévenol flash floods”. Journal of Applied Intelligence, 35 (2), 178–189. doi:10.1007/s10489-010-0210-y
    • (2011) Journal of Applied Intelligence , vol.35 , Issue.2 , pp. 178-189
    • Toukourou, M.1
  • 38
    • 3242715174 scopus 로고    scopus 로고
    • Dynamic neural networks with data assimilation
    • H.Van Den Boogaard, and A.Mynett,, 2004. Dynamic neural networks with data assimilation. Hydrological Processes, 18, 1959–1966. doi:10.1002/hyp.5579
    • (2004) Hydrological Processes , vol.18 , pp. 1959-1966
    • Van Den Boogaard, H.1    Mynett, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.