-
1
-
-
78649687209
-
Circadian integration of metabolism and energetics
-
Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science 2010; 330: 1349-1354.
-
(2010)
Science
, vol.330
, pp. 1349-1354
-
-
Bass, J.1
Takahashi, J.S.2
-
2
-
-
0015353260
-
Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions
-
Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 1972; 69: 1583-1586.
-
(1972)
Proc Natl Acad Sci U S A
, vol.69
, pp. 1583-1586
-
-
Stephan, F.K.1
Zucker, I.2
-
3
-
-
0015504847
-
Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat
-
Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 1972; 42: 201-206.
-
(1972)
Brain Res
, vol.42
, pp. 201-206
-
-
Moore, R.Y.1
Eichler, V.B.2
-
4
-
-
0025021084
-
Transplanted suprachiasmatic nucleus determines circadian period
-
Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science 1990; 247: 975-978.
-
(1990)
Science
, vol.247
, pp. 975-978
-
-
Ralph, M.R.1
Foster, R.G.2
Davis, F.C.3
Menaker, M.4
-
5
-
-
0020465202
-
Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro
-
Groos G, Hendriks J. Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci Lett 1982; 34: 283-288.
-
(1982)
Neurosci Lett
, vol.34
, pp. 283-288
-
-
Groos, G.1
Hendriks, J.2
-
6
-
-
0020029696
-
Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice
-
Green DJ, Gillette R. Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res 1982; 245: 198-200.
-
(1982)
Brain Res
, vol.245
, pp. 198-200
-
-
Green, D.J.1
Gillette, R.2
-
7
-
-
0028904194
-
Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms
-
Welsh DK, Logothetis DE, Meister M, Reppert SM. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 1995; 14: 697-706.
-
(1995)
Neuron
, vol.14
, pp. 697-706
-
-
Welsh, D.K.1
Logothetis, D.E.2
Meister, M.3
Reppert, S.M.4
-
8
-
-
0021680955
-
Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms
-
Reddy P, Zehring WA, Wheeler DA et al. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 1984; 38: 701-710.
-
(1984)
Cell
, vol.38
, pp. 701-710
-
-
Reddy, P.1
Zehring, W.A.2
Wheeler, D.A.3
-
9
-
-
0015119210
-
Clock mutants of Drosophila melanogaster
-
Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 1971; 68: 2112-2116.
-
(1971)
Proc Natl Acad Sci U S A
, vol.68
, pp. 2112-2116
-
-
Konopka, R.J.1
Benzer, S.2
-
10
-
-
0028241271
-
Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior
-
Vitaterna MH, King DP, Chang AM et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 1994; 264: 719-725.
-
(1994)
Science
, vol.264
, pp. 719-725
-
-
Vitaterna, M.H.1
King, D.P.2
Chang, A.M.3
-
11
-
-
77951897767
-
Systems biology of mammalian circadian clocks
-
Ukai H, Ueda HR. Systems biology of mammalian circadian clocks. Annu Rev Physiol 2010; 72: 579-603.
-
(2010)
Annu Rev Physiol
, vol.72
, pp. 579-603
-
-
Ukai, H.1
Ueda, H.R.2
-
12
-
-
0034724728
-
Resetting central and peripheral circadian oscillators in transgenic rats
-
Yamazaki S, Numano R, Abe M et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000; 288: 682-685.
-
(2000)
Science
, vol.288
, pp. 682-685
-
-
Yamazaki, S.1
Numano, R.2
Abe, M.3
-
13
-
-
0032511229
-
A serum shock induces circadian gene expression in mammalian tissue culture cells
-
Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 1998; 93: 929-937.
-
(1998)
Cell
, vol.93
, pp. 929-937
-
-
Balsalobre, A.1
Damiola, F.2
Schibler, U.3
-
14
-
-
0042566193
-
Temperature compensation and temperature resetting of circadian rhythms in mammalian cultured fibroblasts
-
Tsuchiya Y, Akashi M, Nishida E. Temperature compensation and temperature resetting of circadian rhythms in mammalian cultured fibroblasts. Genes Cells 2003; 8: 713-720.
-
(2003)
Genes Cells
, vol.8
, pp. 713-720
-
-
Tsuchiya, Y.1
Akashi, M.2
Nishida, E.3
-
15
-
-
55149112074
-
A high-throughput assay for siRNA-based circadian screens in human U2OS cells
-
Vollmers C, Panda S, DiTacchio L. A high-throughput assay for siRNA-based circadian screens in human U2OS cells. PLoS One 2008; 3: e3457.
-
(2008)
PLoS One
, vol.3
, pp. e3457
-
-
Vollmers, C.1
Panda, S.2
DiTacchio, L.3
-
16
-
-
11144353910
-
PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
-
Yoo SH, Yamazaki S, Lowrey PL et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 2004; 101: 5339-5346.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 5339-5346
-
-
Yoo, S.H.1
Yamazaki, S.2
Lowrey, P.L.3
-
17
-
-
34247899223
-
Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain
-
Dodt HU, Leischner U, Schierloh A et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 2007; 4: 331-336.
-
(2007)
Nat Methods
, vol.4
, pp. 331-336
-
-
Dodt, H.U.1
Leischner, U.2
Schierloh, A.3
-
18
-
-
84859132261
-
Chemical clearing and dehydration of GFP expressing mouse brains
-
Becker K, Jahrling N, Saghafi S, Weiler R, Dodt HU. Chemical clearing and dehydration of GFP expressing mouse brains. PLoS One 2012; 7: e33916.
-
(2012)
PLoS One
, vol.7
, pp. e33916
-
-
Becker, K.1
Jahrling, N.2
Saghafi, S.3
Weiler, R.4
Dodt, H.U.5
-
19
-
-
84868135888
-
Three-dimensional imaging of solvent-cleared organs using 3DISCO
-
Erturk A, Becker K, Jahrling N et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 2012; 7: 1983-1995.
-
(2012)
Nat Protoc
, vol.7
, pp. 1983-1995
-
-
Erturk, A.1
Becker, K.2
Jahrling, N.3
-
20
-
-
84910092406
-
iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging
-
Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 2014; 159: 896-910.
-
(2014)
Cell
, vol.159
, pp. 896-910
-
-
Renier, N.1
Wu, Z.2
Simon, D.J.3
Yang, J.4
Ariel, P.5
Tessier-Lavigne, M.6
-
21
-
-
80054995024
-
Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain
-
Hama H, Kurokawa H, Kawano H et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 2011; 14: 1481-1488.
-
(2011)
Nat Neurosci
, vol.14
, pp. 1481-1488
-
-
Hama, H.1
Kurokawa, H.2
Kawano, H.3
-
22
-
-
84880920117
-
SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction
-
Ke MT, Fujimoto S, Imai T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 2013; 16: 1154-1161.
-
(2013)
Nat Neurosci
, vol.16
, pp. 1154-1161
-
-
Ke, M.T.1
Fujimoto, S.2
Imai, T.3
-
23
-
-
84899620303
-
Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis
-
Susaki EA, Tainaka K, Perrin D et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 2014; 157: 726-739.
-
(2014)
Cell
, vol.157
, pp. 726-739
-
-
Susaki, E.A.1
Tainaka, K.2
Perrin, D.3
-
24
-
-
84874536260
-
ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue
-
Kuwajima T, Sitko AA, Bhansali P, Jurgens C, Guido W, Mason C. ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 2013; 140: 1364-1368.
-
(2013)
Development
, vol.140
, pp. 1364-1368
-
-
Kuwajima, T.1
Sitko, A.A.2
Bhansali, P.3
Jurgens, C.4
Guido, W.5
Mason, C.6
-
25
-
-
84961288329
-
A rapid optical clearing protocol using 2,2'-thiodiethanol for microscopic observation of fixed mouse brain
-
Aoyagi Y, Kawakami R, Osanai H, Hibi T, Nemoto T. A rapid optical clearing protocol using 2, 2'-thiodiethanol for microscopic observation of fixed mouse brain. PLoS One 2015; 10: e0116280.
-
(2015)
PLoS One
, vol.10
, pp. e0116280
-
-
Aoyagi, Y.1
Kawakami, R.2
Osanai, H.3
Hibi, T.4
Nemoto, T.5
-
26
-
-
84878115127
-
Structural and molecular interrogation of intact biological systems
-
Chung K, Wallace J, Kim SY et al. Structural and molecular interrogation of intact biological systems. Nature 2013; 497: 332-337.
-
(2013)
Nature
, vol.497
, pp. 332-337
-
-
Chung, K.1
Wallace, J.2
Kim, S.Y.3
-
27
-
-
84964313635
-
Advanced CLARITY for rapid and high-resolution imaging of intact tissues
-
Tomer R, Ye L, Hsueh B, Deisseroth K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc 2014; 9: 1682-1697.
-
(2014)
Nat Protoc
, vol.9
, pp. 1682-1697
-
-
Tomer, R.1
Ye, L.2
Hsueh, B.3
Deisseroth, K.4
-
28
-
-
84908404143
-
Single-cell phenotyping within transparent intact tissue through whole-body clearing
-
Yang B, Treweek JB, Kulkarni RP et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 2014; 158: 945-958.
-
(2014)
Cell
, vol.158
, pp. 945-958
-
-
Yang, B.1
Treweek, J.B.2
Kulkarni, R.P.3
-
29
-
-
84910025752
-
Whole-body imaging with single-cell resolution by tissue decolorization
-
Tainaka K, Kubota SI, Suyama TQ et al. Whole-body imaging with single-cell resolution by tissue decolorization. Cell 2014; 159: 911-924.
-
(2014)
Cell
, vol.159
, pp. 911-924
-
-
Tainaka, K.1
Kubota, S.I.2
Suyama, T.Q.3
-
30
-
-
84922021732
-
Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy
-
Keller PJ, Ahrens MB. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron 2015; 85: 462-483.
-
(2015)
Neuron
, vol.85
, pp. 462-483
-
-
Keller, P.J.1
Ahrens, M.B.2
-
31
-
-
0029781519
-
A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms
-
Silver R, LeSauter J, Tresco PA, Lehman MN. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 1996; 382: 810-813.
-
(1996)
Nature
, vol.382
, pp. 810-813
-
-
Silver, R.1
LeSauter, J.2
Tresco, P.A.3
Lehman, M.N.4
-
32
-
-
84875379260
-
Neuroanatomy of the extended circadian rhythm system
-
Morin LP. Neuroanatomy of the extended circadian rhythm system. Exp Neurol 2013; 243: 4-20.
-
(2013)
Exp Neurol
, vol.243
, pp. 4-20
-
-
Morin, L.P.1
-
33
-
-
84892679362
-
Dual regulation of clock gene Per2 expression in discrete brain areas by the circadian pacemaker and methamphetamine-induced oscillator in rats
-
Natsubori A, Honma K, Honma S. Dual regulation of clock gene Per2 expression in discrete brain areas by the circadian pacemaker and methamphetamine-induced oscillator in rats. Eur J Neurosci 2014; 39: 229-240.
-
(2014)
Eur J Neurosci
, vol.39
, pp. 229-240
-
-
Natsubori, A.1
Honma, K.2
Honma, S.3
-
34
-
-
0035057450
-
Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice
-
Wakamatsu H, Yoshinobu Y, Aida R, Moriya T, Akiyama M, Shibata S. Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur J Neurosci 2001; 13: 1190-1196.
-
(2001)
Eur J Neurosci
, vol.13
, pp. 1190-1196
-
-
Wakamatsu, H.1
Yoshinobu, Y.2
Aida, R.3
Moriya, T.4
Akiyama, M.5
Shibata, S.6
-
35
-
-
84930247091
-
Clock genes control cortical critical period timing
-
Kobayashi Y, Ye Z, Hensch TK. Clock genes control cortical critical period timing. Neuron 2015; 86: 264-275.
-
(2015)
Neuron
, vol.86
, pp. 264-275
-
-
Kobayashi, Y.1
Ye, Z.2
Hensch, T.K.3
-
36
-
-
3843091540
-
Molecular-timetable methods for detection of body time and rhythm disorders from single-time-point genome-wide expression profiles
-
Ueda HR, Chen W, Minami Y et al. Molecular-timetable methods for detection of body time and rhythm disorders from single-time-point genome-wide expression profiles. Proc Natl Acad Sci U S A 2004; 101: 11227-11232.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 11227-11232
-
-
Ueda, H.R.1
Chen, W.2
Minami, Y.3
-
37
-
-
67649875655
-
Measurement of internal body time by blood metabolomics
-
Minami Y, Kasukawa T, Kakazu Y et al. Measurement of internal body time by blood metabolomics. Proc Natl Acad Sci U S A 2009; 106: 9890-9895.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 9890-9895
-
-
Minami, Y.1
Kasukawa, T.2
Kakazu, Y.3
-
38
-
-
84871917034
-
Human blood metabolite timetable indicates internal body time
-
Kasukawa T, Sugimoto M, Hida A et al. Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci U S A 2012; 109: 15036-15041.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 15036-15041
-
-
Kasukawa, T.1
Sugimoto, M.2
Hida, A.3
-
39
-
-
84885623978
-
Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag
-
Yamaguchi Y, Suzuki T, Mizoro Y et al. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 2013; 342: 85-90.
-
(2013)
Science
, vol.342
, pp. 85-90
-
-
Yamaguchi, Y.1
Suzuki, T.2
Mizoro, Y.3
-
40
-
-
84887481024
-
A neuropeptide speeds circadian entrainment by reducing intercellular synchrony
-
An S, Harang R, Meeker K et al. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony. Proc Natl Acad Sci U S A 2013; 110: E4355-E4361.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. E4355-E4361
-
-
An, S.1
Harang, R.2
Meeker, K.3
-
41
-
-
84924257556
-
Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms
-
Lee IT, Chang AS, Manandhar M et al. Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. Neuron 2015; 85: 1086-1102.
-
(2015)
Neuron
, vol.85
, pp. 1086-1102
-
-
Lee, I.T.1
Chang, A.S.2
Manandhar, M.3
-
42
-
-
13444303901
-
Identification of neuromedin S and its possible role in the mammalian circadian oscillator system
-
Mori K, Miyazato M, Ida T et al. Identification of neuromedin S and its possible role in the mammalian circadian oscillator system. EMBO J 2005; 24: 325-335.
-
(2005)
EMBO J
, vol.24
, pp. 325-335
-
-
Mori, K.1
Miyazato, M.2
Ida, T.3
-
43
-
-
84899141774
-
A new era for functional labeling of neurons: activity-dependent promoters have come of age
-
Kawashima T, Okuno H, Bito H. A new era for functional labeling of neurons: activity-dependent promoters have come of age. Front Neural Circuits 2014; 8: 37.
-
(2014)
Front Neural Circuits
, vol.8
, pp. 37
-
-
Kawashima, T.1
Okuno, H.2
Bito, H.3
-
44
-
-
58549112040
-
Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss
-
Halassa MM, Florian C, Fellin T et al. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 2009; 61: 213-219.
-
(2009)
Neuron
, vol.61
, pp. 213-219
-
-
Halassa, M.M.1
Florian, C.2
Fellin, T.3
-
45
-
-
84882747260
-
Astrocyte-derived adenosine modulates increased sleep pressure during inflammatory response
-
Nadjar A, Blutstein T, Aubert A, Laye S, Haydon PG. Astrocyte-derived adenosine modulates increased sleep pressure during inflammatory response. Glia 2013; 61: 724-731.
-
(2013)
Glia
, vol.61
, pp. 724-731
-
-
Nadjar, A.1
Blutstein, T.2
Aubert, A.3
Laye, S.4
Haydon, P.G.5
-
46
-
-
84925823910
-
Neuronal ensembles sufficient for recovery sleep and the sedative actions of alpha adrenergic agonists
-
Zhang Z, Ferretti V, Guntan I et al. Neuronal ensembles sufficient for recovery sleep and the sedative actions of alpha adrenergic agonists. Nat Neurosci 2015; 18: 553-561.
-
(2015)
Nat Neurosci
, vol.18
, pp. 553-561
-
-
Zhang, Z.1
Ferretti, V.2
Guntan, I.3
-
47
-
-
0022970390
-
Disorganization of the rat activity rhythm by chronic treatment with methamphetamine
-
Honma K, Honma S, Hiroshige T. Disorganization of the rat activity rhythm by chronic treatment with methamphetamine. Physiol Behav 1986; 38: 687-695.
-
(1986)
Physiol Behav
, vol.38
, pp. 687-695
-
-
Honma, K.1
Honma, S.2
Hiroshige, T.3
-
48
-
-
0023203621
-
Activity rhythms in the circadian domain appear in suprachiasmatic nuclei lesioned rats given methamphetamine
-
Honma K, Honma S, Hiroshige T. Activity rhythms in the circadian domain appear in suprachiasmatic nuclei lesioned rats given methamphetamine. Physiol Behav 1987; 40: 767-774.
-
(1987)
Physiol Behav
, vol.40
, pp. 767-774
-
-
Honma, K.1
Honma, S.2
Hiroshige, T.3
-
49
-
-
0018742875
-
Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus
-
Stephan FK, Swann JM, Sisk CL. Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behav Neural Biol 1979; 25: 346-363.
-
(1979)
Behav Neural Biol
, vol.25
, pp. 346-363
-
-
Stephan, F.K.1
Swann, J.M.2
Sisk, C.L.3
-
50
-
-
69849094896
-
Food-anticipatory circadian rhythms: concepts and methods
-
Mistlberger RE. Food-anticipatory circadian rhythms: concepts and methods. Eur J Neurosci 2009; 30: 1718-1729.
-
(2009)
Eur J Neurosci
, vol.30
, pp. 1718-1729
-
-
Mistlberger, R.E.1
-
51
-
-
0037067652
-
Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance
-
Pando MP, Morse D, Cermakian N, Sassone-Corsi P. Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell 2002; 110: 107-117.
-
(2002)
Cell
, vol.110
, pp. 107-117
-
-
Pando, M.P.1
Morse, D.2
Cermakian, N.3
Sassone-Corsi, P.4
-
52
-
-
84864584460
-
Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue
-
Hughes ME, Hong HK, Chong JL et al. Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue. PLoS Genet 2012; 8: e1002835.
-
(2012)
PLoS Genet
, vol.8
, pp. e1002835
-
-
Hughes, M.E.1
Hong, H.K.2
Chong, J.L.3
-
53
-
-
72449164580
-
Circadian timing in cancer treatments
-
Levi F, Okyar A, Dulong S, Innominato PF, Clairambault J. Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol 2010; 50: 377-421.
-
(2010)
Annu Rev Pharmacol Toxicol
, vol.50
, pp. 377-421
-
-
Levi, F.1
Okyar, A.2
Dulong, S.3
Innominato, P.F.4
Clairambault, J.5
-
55
-
-
75849128795
-
A circadian clock in macrophages controls inflammatory immune responses
-
Keller M, Mazuch J, Abraham U et al. A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A 2009; 106: 21407-21412.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 21407-21412
-
-
Keller, M.1
Mazuch, J.2
Abraham, U.3
-
56
-
-
84905727517
-
An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action
-
Gibbs J, Ince L, Matthews L et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med 2014; 20: 919-926.
-
(2014)
Nat Med
, vol.20
, pp. 919-926
-
-
Gibbs, J.1
Ince, L.2
Matthews, L.3
-
57
-
-
84920724791
-
Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
-
Lavin Y, Winter D, Blecher-Gonen R et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 2014; 159: 1312-1326.
-
(2014)
Cell
, vol.159
, pp. 1312-1326
-
-
Lavin, Y.1
Winter, D.2
Blecher-Gonen, R.3
-
58
-
-
84907479665
-
T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells
-
Iijima N, Iwasaki A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 2014; 346: 93-98.
-
(2014)
Science
, vol.346
, pp. 93-98
-
-
Iijima, N.1
Iwasaki, A.2
|