메뉴 건너뛰기




Volumn 270, Issue , 2015, Pages 156-168

From genome-scale data to models of infectious disease: A Bayesian network-based strategy to drive model development

Author keywords

Bayesian network inference; Infectious diseases; Large scale data analysis; Malaria; Model development

Indexed keywords

BAYESIAN NETWORKS; DATA MINING; DIGITAL STORAGE; DISEASES; GENES;

EID: 84940207451     PISSN: 00255564     EISSN: 18793134     Source Type: Journal    
DOI: 10.1016/j.mbs.2015.06.006     Document Type: Article
Times cited : (6)

References (53)
  • 1
    • 84875728618 scopus 로고    scopus 로고
    • Human Infections and Detection of Plasmodium Knowlesi
    • Singh B., Daneshvar C. Human Infections and Detection of Plasmodium Knowlesi. Clin. Micorbiol. Rev. 2013, 26:165-184.
    • (2013) Clin. Micorbiol. Rev. , vol.26 , pp. 165-184
    • Singh, B.1    Daneshvar, C.2
  • 2
    • 33750901836 scopus 로고    scopus 로고
    • The treatment of complicated and severe malaria
    • Pasvol G. The treatment of complicated and severe malaria. Br. Med. Bull. 2005, 75-76:29-47.
    • (2005) Br. Med. Bull. , pp. 29-47
    • Pasvol, G.1
  • 8
    • 0028561099 scopus 로고
    • Positive matrix factorization-A nonnegative factor model with optimal utilization of error-estimates of data values
    • Paatero P., Tapper U. Positive matrix factorization-A nonnegative factor model with optimal utilization of error-estimates of data values. Environmetrics 1994, 5:111-126.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 9
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I., Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:2507-2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46:389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 12
    • 54749109964 scopus 로고    scopus 로고
    • Analysis of metabolomic data using support vector machines
    • Mahadevan S., Shah S.L., Marrie T.J., Slupsky C.M. Analysis of metabolomic data using support vector machines. Anal. Chem. 2008, 80:7562-7570.
    • (2008) Anal. Chem. , vol.80 , pp. 7562-7570
    • Mahadevan, S.1    Shah, S.L.2    Marrie, T.J.3    Slupsky, C.M.4
  • 13
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc. Ser. B-Methodol. 1996, 58:267-288.
    • (1996) J. Roy. Stat. Soc. Ser. B-Methodol. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 14
    • 0242597103 scopus 로고    scopus 로고
    • Feature subset selection: A correlation based filter approach
    • Hall M.A., Smith L.A. Feature subset selection: A correlation based filter approach. Prog. Connect.-Based Inform. Syst. 1998, 1-2:855-858.
    • (1998) Prog. Connect.-Based Inform. Syst. , pp. 855-858
    • Hall, M.A.1    Smith, L.A.2
  • 15
    • 0001765146 scopus 로고
    • Efficient algorithm for a complete link method
    • Defays D. Efficient algorithm for a complete link method. Comput. J. 1977, 20:364-366.
    • (1977) Comput. J. , vol.20 , pp. 364-366
    • Defays, D.1
  • 16
    • 0002663098 scopus 로고
    • Slink-Optimally efficient algorithm for single-link cluster method
    • Sibson R. Slink-Optimally efficient algorithm for single-link cluster method. Comput. J. 1973, 16:30-34.
    • (1973) Comput. J. , vol.16 , pp. 30-34
    • Sibson, R.1
  • 19
    • 77954484005 scopus 로고    scopus 로고
    • Revealing differences in gene network inference algorithms on the network level by ensemble methods
    • Altay G., Emmert-Streib F. Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics 2010, 26:1738-1744.
    • (2010) Bioinformatics , vol.26 , pp. 1738-1744
    • Altay, G.1    Emmert-Streib, F.2
  • 23
    • 79959590612 scopus 로고    scopus 로고
    • Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella
    • Yoon H., Ansong C., McDermott J.E., Gritsenko M., Smith R.D., Heffron F., Adkins J.N. Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella. BMC Syst. Biol. 2011, 5:100. http://www.biomedcentral.com/content/pdf/1752-0509-5-100.pdf.
    • (2011) BMC Syst. Biol. , vol.5 , pp. 100
    • Yoon, H.1    Ansong, C.2    McDermott, J.E.3    Gritsenko, M.4    Smith, R.D.5    Heffron, F.6    Adkins, J.N.7
  • 24
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin A.A., Nemenman I., Basso K., Wiggins C., Stolovitzky G., Dalla Favera R., Califano A. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 2006, 7. http://www.biomedcentral.com/content/pdf/1471-2105-7-S1-S7.pdf.
    • (2006) BMC Bioinform. , pp. 7
    • Margolin, A.A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5    Dalla Favera, R.6    Califano, A.7
  • 25
    • 36248999573 scopus 로고    scopus 로고
    • Information-theoretic inference of large transcriptional regulatory networks
    • Meyer P.E., Kontos K., Lafitte F., Bontempi G. Information-theoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinform. Syst. Biol. 2007, 79879. http://bsb.eurasipjournals.com/content/pdf/1687-4153-2007-79879.pdf.
    • (2007) EURASIP J. Bioinform. Syst. Biol. , pp. 79879
    • Meyer, P.E.1    Kontos, K.2    Lafitte, F.3    Bontempi, G.4
  • 26
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding C., Peng H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 2005, 3:185-205.
    • (2005) J. Bioinform. Comput. Biol. , vol.3 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 27
    • 0035661275 scopus 로고    scopus 로고
    • Application of the mutual information criterion for feature selection in computer-aided diagnosis
    • Tourassi G.D., Frederick E.D., Markey M.K., Floyd C.E. Application of the mutual information criterion for feature selection in computer-aided diagnosis. Med. Phys. 2001, 28:2394-2402.
    • (2001) Med. Phys. , vol.28 , pp. 2394-2402
    • Tourassi, G.D.1    Frederick, E.D.2    Markey, M.K.3    Floyd, C.E.4
  • 28
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • de la Fuente A., Bing N., Hoeschele I., Mendes P. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 2004, 20:3565-3574.
    • (2004) Bioinformatics , vol.20 , pp. 3565-3574
    • de la Fuente, A.1    Bing, N.2    Hoeschele, I.3    Mendes, P.4
  • 30
    • 34848903220 scopus 로고    scopus 로고
    • From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data
    • Opgen-Rhein R., Strimmer K. From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol. 2007, 1:37. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1995222/pdf/1752-0509-1-37.pdf.
    • (2007) BMC Syst. Biol. , vol.1 , pp. 37
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 31
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schafer J., Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 2005, 21:754-764.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schafer, J.1    Strimmer, K.2
  • 32
    • 0036191190 scopus 로고    scopus 로고
    • Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling
    • Toh H., Horimoto K. Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics 2002, 18:287-297.
    • (2002) Bioinformatics , vol.18 , pp. 287-297
    • Toh, H.1    Horimoto, K.2
  • 33
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G.F., Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 1992, 9:309-347.
    • (1992) Mach. Learn. , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 34
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete-data
    • Madigan D., York J. Bayesian graphical models for discrete-data. Int. Stat. Rev. 1995, 63:215-232.
    • (1995) Int. Stat. Rev. , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 37
    • 0002219642 scopus 로고    scopus 로고
    • Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm
    • Friedman N., Nachman I., Peer D. Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm. Proc. Uncert. Artif. Intell. 1999, 15:206-215.
    • (1999) Proc. Uncert. Artif. Intell. , vol.15 , pp. 206-215
    • Friedman, N.1    Nachman, I.2    Peer, D.3
  • 40
    • 30144445300 scopus 로고    scopus 로고
    • Distinguishing dengue fever from other infections on the basis of simple clinical and laboratory features: Application of logistic regression analysis
    • Chadwick D., Arch B., Wilder-Smith A., Paton N. Distinguishing dengue fever from other infections on the basis of simple clinical and laboratory features: Application of logistic regression analysis. J. Clin. Virol. 2006, 35:147-153.
    • (2006) J. Clin. Virol. , vol.35 , pp. 147-153
    • Chadwick, D.1    Arch, B.2    Wilder-Smith, A.3    Paton, N.4
  • 41
    • 58149268119 scopus 로고    scopus 로고
    • Modelling metabolic networks using power-laws and S-systems
    • Voit E.O. Modelling metabolic networks using power-laws and S-systems. Essay Biochem. 2008, 45:29-40.
    • (2008) Essay Biochem. , vol.45 , pp. 29-40
    • Voit, E.O.1
  • 43
    • 0001677717 scopus 로고
    • Controlling the false discovery rate-A practical and powerful approach to multiple testing
    • Benjamini Y., Hochberg Y. Controlling the false discovery rate-A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B-Methodol. 1995, 57:289-300.
    • (1995) J. Roy. Stat. Soc. Ser. B-Methodol. , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 45
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: A Bayesian interpretation and the q-value
    • Storey J.D. The positive false discovery rate: A Bayesian interpretation and the q-value. Ann. Stat. 2003, 31:2013-2035.
    • (2003) Ann. Stat. , vol.31 , pp. 2013-2035
    • Storey, J.D.1
  • 47
    • 0032729435 scopus 로고    scopus 로고
    • Exploring expression data: Identification and analysis of coexpressed genes
    • Heyer L.J., Kruglyak S., Yooseph S. Exploring expression data: Identification and analysis of coexpressed genes. Genome Res. 1999, 9:1106-1115.
    • (1999) Genome Res. , vol.9 , pp. 1106-1115
    • Heyer, L.J.1    Kruglyak, S.2    Yooseph, S.3
  • 48
    • 67149122033 scopus 로고    scopus 로고
    • Modulated modularity clustering as an exploratory tool for functional genomic inference
    • Stone E.A., Ayroles J.F. Modulated modularity clustering as an exploratory tool for functional genomic inference. PLoS Genet. 2009, 5:e1000479.
    • (2009) PLoS Genet. , vol.5 , pp. e1000479
    • Stone, E.A.1    Ayroles, J.F.2
  • 50
    • 0035024021 scopus 로고    scopus 로고
    • Validating clustering for gene expression data
    • Yeung K.Y., Haynor D.R., Ruzzo W.L. Validating clustering for gene expression data. Bioinformatics 2001, 17:309-318.
    • (2001) Bioinformatics , vol.17 , pp. 309-318
    • Yeung, K.Y.1    Haynor, D.R.2    Ruzzo, W.L.3
  • 51
  • 52
    • 79958782255 scopus 로고    scopus 로고
    • Learning Bayesian networks: Approaches and issues
    • Daly R., Shen Q., Aitken S. Learning Bayesian networks: Approaches and issues. Knowl. Eng. Rev. 2011, 26:99-157.
    • (2011) Knowl. Eng. Rev. , vol.26 , pp. 99-157
    • Daly, R.1    Shen, Q.2    Aitken, S.3
  • 53
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N. Inferring cellular networks using probabilistic graphical models. Science 2004, 303:799-805.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.