메뉴 건너뛰기




Volumn 37, Issue , 2015, Pages 50-55

The development of rational number knowledge: Old topic, new insights

Author keywords

Rational number knowledge; Whole natural number bias

Indexed keywords


EID: 84940009238     PISSN: 09594752     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.learninstruc.2015.01.002     Document Type: Note
Times cited : (26)

References (40)
  • 1
    • 0002454752 scopus 로고
    • Units of quantity: a conceptual basis common to additive and multiplicative structures
    • SUNY Press, Albany, NY, G. Harel, J. Confrey (Eds.)
    • Behr M., Harel G., Post T., Lesh R. Units of quantity: a conceptual basis common to additive and multiplicative structures. The development of multiplicative reasoning in the learning of mathematics 1994, 123-180. SUNY Press, Albany, NY. G. Harel, J. Confrey (Eds.).
    • (1994) The development of multiplicative reasoning in the learning of mathematics , pp. 123-180
    • Behr, M.1    Harel, G.2    Post, T.3    Lesh, R.4
  • 3
    • 0003599607 scopus 로고    scopus 로고
    • (N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Eds. and Trans.), Kluwer Academic Publishers, New York, USA
    • Brousseau G. Theory of didactical situations in mathematics 2002, (N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Eds. and Trans.), Kluwer Academic Publishers, New York, USA.
    • (2002) Theory of didactical situations in mathematics
    • Brousseau, G.1
  • 4
    • 84855981462 scopus 로고    scopus 로고
    • What kinds of numbers do students assign to literal symbols? Aspects of the transition from arithmetic to algebra
    • Christou K.P., Vosniadou S. What kinds of numbers do students assign to literal symbols? Aspects of the transition from arithmetic to algebra. Mathematical Thinking and Learning 2012, 14(1):1-27. 10.1080/10986065.2012.625074.
    • (2012) Mathematical Thinking and Learning , vol.14 , Issue.1 , pp. 1-27
    • Christou, K.P.1    Vosniadou, S.2
  • 6
    • 84939891278 scopus 로고    scopus 로고
    • The representation of fraction magnitudes and the whole number bias reconsidered
    • DeWolf M., Vosniadou S. The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction 2015, 37:39-49. http://dx.doi.org/10.1016/j.learninstruc.2014.07.002.
    • (2015) Learning and Instruction , vol.37 , pp. 39-49
    • DeWolf, M.1    Vosniadou, S.2
  • 8
    • 0033968177 scopus 로고    scopus 로고
    • Nonverbal numerical cognition: from reals to integers
    • Gallistel C.R., Gelman R. Nonverbal numerical cognition: from reals to integers. Trends in Cognitive Science 2000, 4(2):59-65. 10.1016/S1364-6613(99)01424-2.
    • (2000) Trends in Cognitive Science , vol.4 , Issue.2 , pp. 59-65
    • Gallistel, C.R.1    Gelman, R.2
  • 10
    • 84857506196 scopus 로고    scopus 로고
    • Relating magnitudes: the brain's code for proportions
    • Jacob N.J., Vallentin D., Nieder A. Relating magnitudes: the brain's code for proportions. Trends in Cognitive Science 2012, 16:157-166. 10.1016/j.tics.2012.02.002.
    • (2012) Trends in Cognitive Science , vol.16 , pp. 157-166
    • Jacob, N.J.1    Vallentin, D.2    Nieder, A.3
  • 12
    • 84856514049 scopus 로고    scopus 로고
    • When meaningful components interrupt the processing of the whole: the case of fractions
    • Kallai A.Y., Tzelgov J. When meaningful components interrupt the processing of the whole: the case of fractions. Acta Psychologica 2011, 139:358-369. 10.1016/j.actpsy.2011.11.009.
    • (2011) Acta Psychologica , vol.139 , pp. 358-369
    • Kallai, A.Y.1    Tzelgov, J.2
  • 13
    • 84939877597 scopus 로고    scopus 로고
    • Diagnosing misconceptions: Revealing changing decimal fraction knowledge
    • Kelley D., Rittle-Johnson B. Diagnosing misconceptions: Revealing changing decimal fraction knowledge. Learning and Instruction 2015, 37:21-29. http://dx.doi.org/10.1016/j.learninstruc.2014.08.003.
    • (2015) Learning and Instruction , vol.37 , pp. 21-29
    • Kelley, D.1    Rittle-Johnson, B.2
  • 14
    • 0010858776 scopus 로고
    • Rational and fractional numbers as mathematical and personal knowledge: implications for curriculum and instruction
    • Lawrence Erlbaum, Hillsdale, NJ, G. Leinhardt, R. Putnam, R.A. Hattrup (Eds.)
    • Kieren T.E. Rational and fractional numbers as mathematical and personal knowledge: implications for curriculum and instruction. Analysis of arithmetic for mathematics teaching 1992, 323-371. Lawrence Erlbaum, Hillsdale, NJ. G. Leinhardt, R. Putnam, R.A. Hattrup (Eds.).
    • (1992) Analysis of arithmetic for mathematics teaching , pp. 323-371
    • Kieren, T.E.1
  • 17
    • 34548447632 scopus 로고    scopus 로고
    • One, two, three, four, nothing more: an investigation of the conceptual sources of the verbal counting principles
    • Le Corre M., Carey S. One, two, three, four, nothing more: an investigation of the conceptual sources of the verbal counting principles. Cognition 2007, 105:395-438. 10.1016/j.cognition.2006.10.005.
    • (2007) Cognition , vol.105 , pp. 395-438
    • Le Corre, M.1    Carey, S.2
  • 18
    • 84891682947 scopus 로고    scopus 로고
    • Modeling the developmental trajectories of rational number concept(s)
    • McMullen J., Laakkonen E., Hannula-Sormunen M., Lehtinen E. Modeling the developmental trajectories of rational number concept(s). Learning and Instruction 2015, 37:14-20. http://dx.doi.org/10.1016/j.learninstruc.2013.12.004.
    • (2015) Learning and Instruction , vol.37 , pp. 14-20
    • McMullen, J.1    Laakkonen, E.2    Hannula-Sormunen, M.3    Lehtinen, E.4
  • 19
    • 77958151731 scopus 로고    scopus 로고
    • Comparing 5/7 and 2/9: adults can do it by accessing the magnitude of the whole fractions
    • Meert G., Grégoire J., Noël M.P. Comparing 5/7 and 2/9: adults can do it by accessing the magnitude of the whole fractions. Acta Psychologica 2010, 135(3):284-292. 10.1016/j.actpsy.2010.07.014.
    • (2010) Acta Psychologica , vol.135 , Issue.3 , pp. 284-292
    • Meert, G.1    Grégoire, J.2    Noël, M.P.3
  • 20
    • 77954758096 scopus 로고    scopus 로고
    • Comparing the magnitude of two fractions with common components: Which representations are used by 10- and 12-year-olds?
    • Meert G., Grégoire J., Noël M.P. Comparing the magnitude of two fractions with common components: Which representations are used by 10- and 12-year-olds?. Journal of Experimental Child Psychology 2010, 107(3):244-259. 10.1016/j.jecp.2010.04.008.
    • (2010) Journal of Experimental Child Psychology , vol.107 , Issue.3 , pp. 244-259
    • Meert, G.1    Grégoire, J.2    Noël, M.P.3
  • 21
    • 13844264286 scopus 로고    scopus 로고
    • Number concept and conceptual change: towards a systemic model of the processes of change
    • Merenluoto K., Lehtinen E. Number concept and conceptual change: towards a systemic model of the processes of change. Learning and Instruction 2004, 14:519-536. 10.1016/j.learninstruc.2004.06.016.
    • (2004) Learning and Instruction , vol.14 , pp. 519-536
    • Merenluoto, K.1    Lehtinen, E.2
  • 22
    • 33750161942 scopus 로고    scopus 로고
    • Pipes, tubes, and beakers: new approaches to teaching the rational-number system
    • National Academic Press, Washington, DC, M.S. Donovan, J.D. Bransford (Eds.)
    • Moss J. Pipes, tubes, and beakers: new approaches to teaching the rational-number system. How students learn: Mathematics in the classroom 2005, 121-162. National Academic Press, Washington, DC. M.S. Donovan, J.D. Bransford (Eds.).
    • (2005) How students learn: Mathematics in the classroom , pp. 121-162
    • Moss, J.1
  • 23
    • 0242558505 scopus 로고    scopus 로고
    • How valid is it to use number lines to measure children's conceptual knowledge about rational number?
    • Ni Y. How valid is it to use number lines to measure children's conceptual knowledge about rational number?. Educational Psychology 2000, 20(2):139-152. 10.1080/713663716.
    • (2000) Educational Psychology , vol.20 , Issue.2 , pp. 139-152
    • Ni, Y.1
  • 24
    • 15944425784 scopus 로고    scopus 로고
    • Teaching and learning fraction and rational numbers: the origins and implications of whole number bias
    • Ni Y., Zhou Y.-D. Teaching and learning fraction and rational numbers: the origins and implications of whole number bias. Educational Psychologist 2005, 40(1):27-52. 10.1207/s15326985ep4001_3.
    • (2005) Educational Psychologist , vol.40 , Issue.1 , pp. 27-52
    • Ni, Y.1    Zhou, Y.-D.2
  • 26
    • 84879747887 scopus 로고    scopus 로고
    • The natural number bias and magnitude representation in fraction comparison by expert mathematicians
    • Obersteiner A., Van Dooren W., Van Hoof J., Verschaffel L. The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction 2013, 28:64-72. 10.1016/j.learninstruc.2013.05.003.
    • (2013) Learning and Instruction , vol.28 , pp. 64-72
    • Obersteiner, A.1    Van Dooren, W.2    Van Hoof, J.3    Verschaffel, L.4
  • 28
    • 79955719641 scopus 로고    scopus 로고
    • An integrated theory of whole number and fractions development
    • Siegler R.S., Thompson C.A., Schneider M. An integrated theory of whole number and fractions development. Cognitive Psychology 2011, 62(4):273-296. 10.1016/j.cogpsych.2011.03.001.
    • (2011) Cognitive Psychology , vol.62 , Issue.4 , pp. 273-296
    • Siegler, R.S.1    Thompson, C.A.2    Schneider, M.3
  • 29
    • 1842729557 scopus 로고    scopus 로고
    • Aprospective developmental perspective on early mathematics instruction
    • Lawrence Erlbaum Associates, Mahwah, NJ, D.H. Clements, J. Sarama, A.-M. DiBiase (Eds.)
    • Sophian C. Aprospective developmental perspective on early mathematics instruction. Engaging young children in mathematics: Standards for early childhood mathematics 2004, 253-256. Lawrence Erlbaum Associates, Mahwah, NJ. D.H. Clements, J. Sarama, A.-M. DiBiase (Eds.).
    • (2004) Engaging young children in mathematics: Standards for early childhood mathematics , pp. 253-256
    • Sophian, C.1
  • 30
    • 57649114602 scopus 로고    scopus 로고
    • Precursors to number: equivalence relations, less-than and greater-than relations, and units
    • Sophian C. Precursors to number: equivalence relations, less-than and greater-than relations, and units. Behavioral and Brain Sciences 2008, 31:670-671. 10.1017/S0140525X08005566.
    • (2008) Behavioral and Brain Sciences , vol.31 , pp. 670-671
    • Sophian, C.1
  • 32
    • 84897158533 scopus 로고    scopus 로고
    • Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents
    • Torbeyns J., Schneider M., Xin Z., Siegler R.S. Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction 2015, 37:5-13. http://dx.doi.org/10.1016/j.learninstruc.2014.03.002.
    • (2015) Learning and Instruction , vol.37 , pp. 5-13
    • Torbeyns, J.1    Schneider, M.2    Xin, Z.3    Siegler, R.S.4
  • 33
    • 84977491496 scopus 로고    scopus 로고
    • Primitives and non-primitives of numerical representations
    • Oxford University Press, Oxford, England, R. Cohen Kadosh, A. Dowker (Eds.)
    • Tzelgov J., Ganor-Stern D., Kallai A., Pinhas M. Primitives and non-primitives of numerical representations. Oxford handbook of mathematical cognition 2013, 55-66. Oxford University Press, Oxford, England. R. Cohen Kadosh, A. Dowker (Eds.).
    • (2013) Oxford handbook of mathematical cognition , pp. 55-66
    • Tzelgov, J.1    Ganor-Stern, D.2    Kallai, A.3    Pinhas, M.4
  • 34
    • 84862993778 scopus 로고    scopus 로고
    • Naturally biased? In search for reaction time evidence for a natural number bias in adults
    • Vamvakoussi X., Van Dooren W., Verschaffel L. Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior 2012, 31(3):344-355. 10.1016/j.jmathb.2012.02.001.
    • (2012) The Journal of Mathematical Behavior , vol.31 , Issue.3 , pp. 344-355
    • Vamvakoussi, X.1    Van Dooren, W.2    Verschaffel, L.3
  • 35
    • 77951261035 scopus 로고    scopus 로고
    • How many decimals are there between two fractions? Aspects of secondary school students' understanding of rational numbers and their notation
    • Vamvakoussi X., Vosniadou S. How many decimals are there between two fractions? Aspects of secondary school students' understanding of rational numbers and their notation. Cognition and Instruction 2010, 28(2):181-209. 10.1080/07370001003676603.
    • (2010) Cognition and Instruction , vol.28 , Issue.2 , pp. 181-209
    • Vamvakoussi, X.1    Vosniadou, S.2
  • 36
    • 84867559158 scopus 로고    scopus 로고
    • Bridging the gap between the dense and the discrete: the number line and the "rubber line" bridging analogy
    • Vamvakoussi X., Vosniadou S. Bridging the gap between the dense and the discrete: the number line and the "rubber line" bridging analogy. Mathematical Thinking and Learning 2012, 14:265-284.
    • (2012) Mathematical Thinking and Learning , vol.14 , pp. 265-284
    • Vamvakoussi, X.1    Vosniadou, S.2
  • 38
    • 84879643447 scopus 로고    scopus 로고
    • Are secondary school students still hampered by the natural number bias? A reaction time study on fraction comparison tasks
    • Van Hoof J., Lijnen T., Verschaffel L., Van Dooren W. Are secondary school students still hampered by the natural number bias? A reaction time study on fraction comparison tasks. Research in Mathematics Education 2013, 15(2):154-164.
    • (2013) Research in Mathematics Education , vol.15 , Issue.2 , pp. 154-164
    • Van Hoof, J.1    Lijnen, T.2    Verschaffel, L.3    Van Dooren, W.4
  • 39
    • 84898705805 scopus 로고    scopus 로고
    • In search for the natural number bias in secondary school students' interpretation of the effect of arithmetical operations
    • Van Hoof J., Vandewalle J., Verschaffel L., Van Dooren W. In search for the natural number bias in secondary school students' interpretation of the effect of arithmetical operations. Learning and Instruction 2015, 37:30-38. http://dx.doi.org/10.1016/j.learninstruc.2014.03.004.
    • (2015) Learning and Instruction , vol.37 , pp. 30-38
    • Van Hoof, J.1    Vandewalle, J.2    Verschaffel, L.3    Van Dooren, W.4
  • 40
    • 0009169632 scopus 로고
    • Multiplicative conceptual field: what and why?
    • State University of New York Press, Albany, NY, G. Harel, J. Confrey (Eds.)
    • Vergnaud G. Multiplicative conceptual field: what and why?. The development of multiplicative reasoning in the learning of mathematics 1994, 41-60. State University of New York Press, Albany, NY. G. Harel, J. Confrey (Eds.).
    • (1994) The development of multiplicative reasoning in the learning of mathematics , pp. 41-60
    • Vergnaud, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.