-
1
-
-
0002454752
-
Units of quantity: a conceptual basis common to additive and multiplicative structures
-
SUNY Press, Albany, NY, G. Harel, J. Confrey (Eds.)
-
Behr M., Harel G., Post T., Lesh R. Units of quantity: a conceptual basis common to additive and multiplicative structures. The development of multiplicative reasoning in the learning of mathematics 1994, 123-180. SUNY Press, Albany, NY. G. Harel, J. Confrey (Eds.).
-
(1994)
The development of multiplicative reasoning in the learning of mathematics
, pp. 123-180
-
-
Behr, M.1
Harel, G.2
Post, T.3
Lesh, R.4
-
2
-
-
38349120491
-
The mental representation of numerical fractions: real or integer?
-
Bonato M., Fabbri S., Umiltà C., Zorzi M. The mental representation of numerical fractions: real or integer?. Journal of Experimental Psychology: Human Perception and Performance 2007, 33(6):1410-1419. 10.1037/0096-1523.33.6.1410.
-
(2007)
Journal of Experimental Psychology: Human Perception and Performance
, vol.33
, Issue.6
, pp. 1410-1419
-
-
Bonato, M.1
Fabbri, S.2
Umiltà, C.3
Zorzi, M.4
-
3
-
-
0003599607
-
-
(N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Eds. and Trans.), Kluwer Academic Publishers, New York, USA
-
Brousseau G. Theory of didactical situations in mathematics 2002, (N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Eds. and Trans.), Kluwer Academic Publishers, New York, USA.
-
(2002)
Theory of didactical situations in mathematics
-
-
Brousseau, G.1
-
4
-
-
84855981462
-
What kinds of numbers do students assign to literal symbols? Aspects of the transition from arithmetic to algebra
-
Christou K.P., Vosniadou S. What kinds of numbers do students assign to literal symbols? Aspects of the transition from arithmetic to algebra. Mathematical Thinking and Learning 2012, 14(1):1-27. 10.1080/10986065.2012.625074.
-
(2012)
Mathematical Thinking and Learning
, vol.14
, Issue.1
, pp. 1-27
-
-
Christou, K.P.1
Vosniadou, S.2
-
5
-
-
84859572603
-
Equipartitioning/splitting as a foundation of rational number reasoning using learning trajectories
-
PME, Thessaloniki, Greece
-
Confrey J., Maloney A.P., Nguyen K.H., Mojica G., Myers M. Equipartitioning/splitting as a foundation of rational number reasoning using learning trajectories. Proceedings of the 33rd conference of the international group for the psychology of mathematics education: In search for theories in mathematics education 2009, Vol. 2:345-352. PME, Thessaloniki, Greece.
-
(2009)
Proceedings of the 33rd conference of the international group for the psychology of mathematics education: In search for theories in mathematics education
, vol.2
, pp. 345-352
-
-
Confrey, J.1
Maloney, A.P.2
Nguyen, K.H.3
Mojica, G.4
Myers, M.5
-
6
-
-
84939891278
-
The representation of fraction magnitudes and the whole number bias reconsidered
-
DeWolf M., Vosniadou S. The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction 2015, 37:39-49. http://dx.doi.org/10.1016/j.learninstruc.2014.07.002.
-
(2015)
Learning and Instruction
, vol.37
, pp. 39-49
-
-
DeWolf, M.1
Vosniadou, S.2
-
8
-
-
0033968177
-
Nonverbal numerical cognition: from reals to integers
-
Gallistel C.R., Gelman R. Nonverbal numerical cognition: from reals to integers. Trends in Cognitive Science 2000, 4(2):59-65. 10.1016/S1364-6613(99)01424-2.
-
(2000)
Trends in Cognitive Science
, vol.4
, Issue.2
, pp. 59-65
-
-
Gallistel, C.R.1
Gelman, R.2
-
10
-
-
84857506196
-
Relating magnitudes: the brain's code for proportions
-
Jacob N.J., Vallentin D., Nieder A. Relating magnitudes: the brain's code for proportions. Trends in Cognitive Science 2012, 16:157-166. 10.1016/j.tics.2012.02.002.
-
(2012)
Trends in Cognitive Science
, vol.16
, pp. 157-166
-
-
Jacob, N.J.1
Vallentin, D.2
Nieder, A.3
-
12
-
-
84856514049
-
When meaningful components interrupt the processing of the whole: the case of fractions
-
Kallai A.Y., Tzelgov J. When meaningful components interrupt the processing of the whole: the case of fractions. Acta Psychologica 2011, 139:358-369. 10.1016/j.actpsy.2011.11.009.
-
(2011)
Acta Psychologica
, vol.139
, pp. 358-369
-
-
Kallai, A.Y.1
Tzelgov, J.2
-
13
-
-
84939877597
-
Diagnosing misconceptions: Revealing changing decimal fraction knowledge
-
Kelley D., Rittle-Johnson B. Diagnosing misconceptions: Revealing changing decimal fraction knowledge. Learning and Instruction 2015, 37:21-29. http://dx.doi.org/10.1016/j.learninstruc.2014.08.003.
-
(2015)
Learning and Instruction
, vol.37
, pp. 21-29
-
-
Kelley, D.1
Rittle-Johnson, B.2
-
14
-
-
0010858776
-
Rational and fractional numbers as mathematical and personal knowledge: implications for curriculum and instruction
-
Lawrence Erlbaum, Hillsdale, NJ, G. Leinhardt, R. Putnam, R.A. Hattrup (Eds.)
-
Kieren T.E. Rational and fractional numbers as mathematical and personal knowledge: implications for curriculum and instruction. Analysis of arithmetic for mathematics teaching 1992, 323-371. Lawrence Erlbaum, Hillsdale, NJ. G. Leinhardt, R. Putnam, R.A. Hattrup (Eds.).
-
(1992)
Analysis of arithmetic for mathematics teaching
, pp. 323-371
-
-
Kieren, T.E.1
-
15
-
-
0003601049
-
-
National Academy Press, Washington, DC
-
Kilpatrick J., Swafford J., Findell B. Adding it up. Helping children learn mathematics 2001, National Academy Press, Washington, DC.
-
(2001)
Adding it up. Helping children learn mathematics
-
-
Kilpatrick, J.1
Swafford, J.2
Findell, B.3
-
17
-
-
34548447632
-
One, two, three, four, nothing more: an investigation of the conceptual sources of the verbal counting principles
-
Le Corre M., Carey S. One, two, three, four, nothing more: an investigation of the conceptual sources of the verbal counting principles. Cognition 2007, 105:395-438. 10.1016/j.cognition.2006.10.005.
-
(2007)
Cognition
, vol.105
, pp. 395-438
-
-
Le Corre, M.1
Carey, S.2
-
18
-
-
84891682947
-
Modeling the developmental trajectories of rational number concept(s)
-
McMullen J., Laakkonen E., Hannula-Sormunen M., Lehtinen E. Modeling the developmental trajectories of rational number concept(s). Learning and Instruction 2015, 37:14-20. http://dx.doi.org/10.1016/j.learninstruc.2013.12.004.
-
(2015)
Learning and Instruction
, vol.37
, pp. 14-20
-
-
McMullen, J.1
Laakkonen, E.2
Hannula-Sormunen, M.3
Lehtinen, E.4
-
19
-
-
77958151731
-
Comparing 5/7 and 2/9: adults can do it by accessing the magnitude of the whole fractions
-
Meert G., Grégoire J., Noël M.P. Comparing 5/7 and 2/9: adults can do it by accessing the magnitude of the whole fractions. Acta Psychologica 2010, 135(3):284-292. 10.1016/j.actpsy.2010.07.014.
-
(2010)
Acta Psychologica
, vol.135
, Issue.3
, pp. 284-292
-
-
Meert, G.1
Grégoire, J.2
Noël, M.P.3
-
20
-
-
77954758096
-
Comparing the magnitude of two fractions with common components: Which representations are used by 10- and 12-year-olds?
-
Meert G., Grégoire J., Noël M.P. Comparing the magnitude of two fractions with common components: Which representations are used by 10- and 12-year-olds?. Journal of Experimental Child Psychology 2010, 107(3):244-259. 10.1016/j.jecp.2010.04.008.
-
(2010)
Journal of Experimental Child Psychology
, vol.107
, Issue.3
, pp. 244-259
-
-
Meert, G.1
Grégoire, J.2
Noël, M.P.3
-
21
-
-
13844264286
-
Number concept and conceptual change: towards a systemic model of the processes of change
-
Merenluoto K., Lehtinen E. Number concept and conceptual change: towards a systemic model of the processes of change. Learning and Instruction 2004, 14:519-536. 10.1016/j.learninstruc.2004.06.016.
-
(2004)
Learning and Instruction
, vol.14
, pp. 519-536
-
-
Merenluoto, K.1
Lehtinen, E.2
-
22
-
-
33750161942
-
Pipes, tubes, and beakers: new approaches to teaching the rational-number system
-
National Academic Press, Washington, DC, M.S. Donovan, J.D. Bransford (Eds.)
-
Moss J. Pipes, tubes, and beakers: new approaches to teaching the rational-number system. How students learn: Mathematics in the classroom 2005, 121-162. National Academic Press, Washington, DC. M.S. Donovan, J.D. Bransford (Eds.).
-
(2005)
How students learn: Mathematics in the classroom
, pp. 121-162
-
-
Moss, J.1
-
23
-
-
0242558505
-
How valid is it to use number lines to measure children's conceptual knowledge about rational number?
-
Ni Y. How valid is it to use number lines to measure children's conceptual knowledge about rational number?. Educational Psychology 2000, 20(2):139-152. 10.1080/713663716.
-
(2000)
Educational Psychology
, vol.20
, Issue.2
, pp. 139-152
-
-
Ni, Y.1
-
24
-
-
15944425784
-
Teaching and learning fraction and rational numbers: the origins and implications of whole number bias
-
Ni Y., Zhou Y.-D. Teaching and learning fraction and rational numbers: the origins and implications of whole number bias. Educational Psychologist 2005, 40(1):27-52. 10.1207/s15326985ep4001_3.
-
(2005)
Educational Psychologist
, vol.40
, Issue.1
, pp. 27-52
-
-
Ni, Y.1
Zhou, Y.-D.2
-
26
-
-
84879747887
-
The natural number bias and magnitude representation in fraction comparison by expert mathematicians
-
Obersteiner A., Van Dooren W., Van Hoof J., Verschaffel L. The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction 2013, 28:64-72. 10.1016/j.learninstruc.2013.05.003.
-
(2013)
Learning and Instruction
, vol.28
, pp. 64-72
-
-
Obersteiner, A.1
Van Dooren, W.2
Van Hoof, J.3
Verschaffel, L.4
-
28
-
-
79955719641
-
An integrated theory of whole number and fractions development
-
Siegler R.S., Thompson C.A., Schneider M. An integrated theory of whole number and fractions development. Cognitive Psychology 2011, 62(4):273-296. 10.1016/j.cogpsych.2011.03.001.
-
(2011)
Cognitive Psychology
, vol.62
, Issue.4
, pp. 273-296
-
-
Siegler, R.S.1
Thompson, C.A.2
Schneider, M.3
-
29
-
-
1842729557
-
Aprospective developmental perspective on early mathematics instruction
-
Lawrence Erlbaum Associates, Mahwah, NJ, D.H. Clements, J. Sarama, A.-M. DiBiase (Eds.)
-
Sophian C. Aprospective developmental perspective on early mathematics instruction. Engaging young children in mathematics: Standards for early childhood mathematics 2004, 253-256. Lawrence Erlbaum Associates, Mahwah, NJ. D.H. Clements, J. Sarama, A.-M. DiBiase (Eds.).
-
(2004)
Engaging young children in mathematics: Standards for early childhood mathematics
, pp. 253-256
-
-
Sophian, C.1
-
30
-
-
57649114602
-
Precursors to number: equivalence relations, less-than and greater-than relations, and units
-
Sophian C. Precursors to number: equivalence relations, less-than and greater-than relations, and units. Behavioral and Brain Sciences 2008, 31:670-671. 10.1017/S0140525X08005566.
-
(2008)
Behavioral and Brain Sciences
, vol.31
, pp. 670-671
-
-
Sophian, C.1
-
32
-
-
84897158533
-
Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents
-
Torbeyns J., Schneider M., Xin Z., Siegler R.S. Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction 2015, 37:5-13. http://dx.doi.org/10.1016/j.learninstruc.2014.03.002.
-
(2015)
Learning and Instruction
, vol.37
, pp. 5-13
-
-
Torbeyns, J.1
Schneider, M.2
Xin, Z.3
Siegler, R.S.4
-
33
-
-
84977491496
-
Primitives and non-primitives of numerical representations
-
Oxford University Press, Oxford, England, R. Cohen Kadosh, A. Dowker (Eds.)
-
Tzelgov J., Ganor-Stern D., Kallai A., Pinhas M. Primitives and non-primitives of numerical representations. Oxford handbook of mathematical cognition 2013, 55-66. Oxford University Press, Oxford, England. R. Cohen Kadosh, A. Dowker (Eds.).
-
(2013)
Oxford handbook of mathematical cognition
, pp. 55-66
-
-
Tzelgov, J.1
Ganor-Stern, D.2
Kallai, A.3
Pinhas, M.4
-
34
-
-
84862993778
-
Naturally biased? In search for reaction time evidence for a natural number bias in adults
-
Vamvakoussi X., Van Dooren W., Verschaffel L. Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior 2012, 31(3):344-355. 10.1016/j.jmathb.2012.02.001.
-
(2012)
The Journal of Mathematical Behavior
, vol.31
, Issue.3
, pp. 344-355
-
-
Vamvakoussi, X.1
Van Dooren, W.2
Verschaffel, L.3
-
35
-
-
77951261035
-
How many decimals are there between two fractions? Aspects of secondary school students' understanding of rational numbers and their notation
-
Vamvakoussi X., Vosniadou S. How many decimals are there between two fractions? Aspects of secondary school students' understanding of rational numbers and their notation. Cognition and Instruction 2010, 28(2):181-209. 10.1080/07370001003676603.
-
(2010)
Cognition and Instruction
, vol.28
, Issue.2
, pp. 181-209
-
-
Vamvakoussi, X.1
Vosniadou, S.2
-
36
-
-
84867559158
-
Bridging the gap between the dense and the discrete: the number line and the "rubber line" bridging analogy
-
Vamvakoussi X., Vosniadou S. Bridging the gap between the dense and the discrete: the number line and the "rubber line" bridging analogy. Mathematical Thinking and Learning 2012, 14:265-284.
-
(2012)
Mathematical Thinking and Learning
, vol.14
, pp. 265-284
-
-
Vamvakoussi, X.1
Vosniadou, S.2
-
37
-
-
84938388255
-
The framework theory approach applied to mathematics learning
-
Routledge, New York, US, S. Vosniadou (Ed.)
-
Vamvakoussi X., Vosniadou S., Van Dooren W. The framework theory approach applied to mathematics learning. International handbook of research on conceptual change 2013, 305-321. Routledge, New York, US. 2nd ed. S. Vosniadou (Ed.).
-
(2013)
International handbook of research on conceptual change
, pp. 305-321
-
-
Vamvakoussi, X.1
Vosniadou, S.2
Van Dooren, W.3
-
38
-
-
84879643447
-
Are secondary school students still hampered by the natural number bias? A reaction time study on fraction comparison tasks
-
Van Hoof J., Lijnen T., Verschaffel L., Van Dooren W. Are secondary school students still hampered by the natural number bias? A reaction time study on fraction comparison tasks. Research in Mathematics Education 2013, 15(2):154-164.
-
(2013)
Research in Mathematics Education
, vol.15
, Issue.2
, pp. 154-164
-
-
Van Hoof, J.1
Lijnen, T.2
Verschaffel, L.3
Van Dooren, W.4
-
39
-
-
84898705805
-
In search for the natural number bias in secondary school students' interpretation of the effect of arithmetical operations
-
Van Hoof J., Vandewalle J., Verschaffel L., Van Dooren W. In search for the natural number bias in secondary school students' interpretation of the effect of arithmetical operations. Learning and Instruction 2015, 37:30-38. http://dx.doi.org/10.1016/j.learninstruc.2014.03.004.
-
(2015)
Learning and Instruction
, vol.37
, pp. 30-38
-
-
Van Hoof, J.1
Vandewalle, J.2
Verschaffel, L.3
Van Dooren, W.4
-
40
-
-
0009169632
-
Multiplicative conceptual field: what and why?
-
State University of New York Press, Albany, NY, G. Harel, J. Confrey (Eds.)
-
Vergnaud G. Multiplicative conceptual field: what and why?. The development of multiplicative reasoning in the learning of mathematics 1994, 41-60. State University of New York Press, Albany, NY. G. Harel, J. Confrey (Eds.).
-
(1994)
The development of multiplicative reasoning in the learning of mathematics
, pp. 41-60
-
-
Vergnaud, G.1
|