메뉴 건너뛰기




Volumn 113, Issue 1, 2015, Pages 3-18

Stacked Predictive Sparse Decomposition for Classification of Histology Sections

Author keywords

Classification; Sparse coding; Tissue histology; Unsupervised feature learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); GRAPHICS PROCESSING UNIT; TISSUE; TUMORS;

EID: 84939942022     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-014-0790-9     Document Type: Article
Times cited : (51)

References (43)
  • 1
    • 84859150999 scopus 로고    scopus 로고
    • Coupled analysis of in vitro and histology samples to quantify structure-function relationships
    • Acar, E., Plopper, G., & Yener, B. (2012). Coupled analysis of in vitro and histology samples to quantify structure-function relationships. PLoS One, 7, e32227.
    • (2012) PLoS One , vol.7
    • Acar, E.1    Plopper, G.2    Yener, B.3
  • 3
    • 70449334340 scopus 로고    scopus 로고
    • Computer-aided prognosis of ER+ breast cancer histopathology and correlating survival outcome with oncotype DX assay
    • Basavanhally, A., Xu, J., Madabhushu, A., & Ganesan, S. (2009) Computer-aided prognosis of ER+ breast cancer histopathology and correlating survival outcome with oncotype DX assay. ISBI, 851–854.
    • (2009) ISBI , pp. 851-854
    • Basavanhally, A.1    Xu, J.2    Madabhushu, A.3    Ganesan, S.4
  • 4
    • 77955196330 scopus 로고    scopus 로고
    • Automatic identification and delineation of germ layer components in H&E stained images of teratomas derived from human and nonhuman primate embryonic stem cells. In Proceedings of the 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Rotterdam
    • Bhagavatula, R., Fickus, M. C., Kelly, W., Guo, C., Ozolek, J. A., Castro, C. A., & Kovacevic, J. (2010). Automatic identification and delineation of germ layer components in H&E stained images of teratomas derived from human and nonhuman primate embryonic stem cells. In Proceedings of the 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Rotterdam, The Netherlands, 14–17 April 2010, pp. 1041–1044. doi:10.1109/ISBI.2010.5490168.
    • (2010) The Netherlands, 14–17 April , vol.2010 , pp. 1041-1044
    • Bhagavatula, R.1    Fickus, M.C.2    Kelly, W.3    Guo, C.4    Ozolek, J.A.5    Castro, C.A.6    Kovacevic, J.7
  • 5
    • 84857695989 scopus 로고    scopus 로고
    • Multiscale feature analysis of salivary gland branching morphogenesis
    • Bilgin, C., Ray, S., Baydil, B., Daley, W., Larsen, M., & Yener, B. (2012). Multiscale feature analysis of salivary gland branching morphogenesis. PLoS One, 7, e32906.
    • (2012) PLoS One , vol.7
    • Bilgin, C.1    Ray, S.2    Baydil, B.3    Daley, W.4    Larsen, M.5    Yener, B.6
  • 8
    • 84887390740 scopus 로고    scopus 로고
    • Chang, H., Borowsky, A., Spellman, P., & Parvin, B. (2013a). Classification of tumor histology via morphometric context. In Proceedings of the conference on computer vision and pattern recognition
    • Chang, H., Borowsky, A., Spellman, P., & Parvin, B. (2013a). Classification of tumor histology via morphometric context. In Proceedings of the conference on computer vision and pattern recognition.
  • 9
    • 84897571868 scopus 로고    scopus 로고
    • Parvin, B: Characterization of tissue histopathology via predictive sparse decomposition and spatial pyramid matching. Medical Image Computing and Computed-Assisted Intervention-MICCAI
    • Chang, H., Nayak, N., Spellman, P., & Parvin, B. (2013b). Characterization of tissue histopathology via predictive sparse decomposition and spatial pyramid matching. Medical Image Computing and Computed-Assisted Intervention-MICCAI.
    • (2013)
    • Chang, H.1    Nayak, N.2    Spellman, P.3
  • 10
    • 84875989569 scopus 로고    scopus 로고
    • Invariant delineation of nuclear architecture in glioblastoma multiforme for clinical and molecular association
    • Chang, H., Han, J., Borowsky, A., Loss, L. A., Gray, J. W., Spellman, P. T., et al. (2013c). Invariant delineation of nuclear architecture in glioblastoma multiforme for clinical and molecular association. IEEE Transactions on Medical Imaging, 32, 670–682.
    • (2013) IEEE Transactions on Medical Imaging , vol.32 , pp. 670-682
    • Chang, H.1    Han, J.2    Borowsky, A.3    Loss, L.A.4    Gray, J.W.5    Spellman, P.T.6
  • 11
    • 84885899176 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer histology images with deep neural networks
    • Ciresan, D. C., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2013). Mitosis detection in breast cancer histology images with deep neural networks. MICCAI, 2, 411–418.
    • (2013) MICCAI , vol.2 , pp. 411-418
    • Ciresan, D.C.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 12
    • 84885929616 scopus 로고    scopus 로고
    • A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
    • Cruz-Roa, A. A., Ovalle, J. E. A., Madabhushi, A., & Osorio, F. A. G. (2013). A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. MICCAI, 8150, 403–410.
    • (2013) MICCAI , vol.8150 , pp. 403-410
    • Cruz-Roa, A.A.1    Ovalle, J.E.A.2    Madabhushi, A.3    Osorio, F.A.G.4
  • 13
    • 51049084406 scopus 로고    scopus 로고
    • Color and texture based segmentation of molecular pathology images using HSOMs. In Proceedings of the 2008 IEEE International Symposium on Biomedical Imaging: From Nano to Macro
    • Datar, M., Padfield, D. R., & Cline, H. (2008). Color and texture based segmentation of molecular pathology images using HSOMs. In Proceedings of the 2008 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, 14–17 May 2008, pp. 292–295. doi:10.1109/ISBI.2008.4540990.
    • (2008) Paris, 14–17 May , vol.2008 , pp. 292-295
    • Datar, M.1    Padfield, D.R.2    Cline, H.3
  • 14
    • 33947722975 scopus 로고    scopus 로고
    • Automated cancer diagnosis based on histopathological images: A systematic survey. Technical report, Rensselaer Polytechnic Institute
    • Demir, C., & Yener, B. (2009). Automated cancer diagnosis based on histopathological images: A systematic survey. Technical report, Rensselaer Polytechnic Institute, Department of Computer Science.
    • (2009) Department of Computer Science
    • Demir, C.1    Yener, B.2
  • 15
    • 80055064184 scopus 로고    scopus 로고
    • Cascaded multi-class pairwise classifier (CascaMPa) for normal, cancerous, and cancer confounder classes in prostate histology. In Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago
    • Doyle, S., Feldman, M. D., Tomaszewski, J., Shih, N., & Madabhushi, A. (2011). Cascaded multi-class pairwise classifier (CascaMPa) for normal, cancerous, and cancer confounder classes in prostate histology. In Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, IL, 30 March–2 April 2011, pp. 715–718. doi:10.1109/ISBI.2011.5872506.
    • (2011) IL, 30 March–2 April , vol.2011 , pp. 715-718
    • Doyle, S.1    Feldman, M.D.2    Tomaszewski, J.3    Shih, N.4    Madabhushi, A.5
  • 16
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15, 3736–3745.
    • (2006) IEEE Transactions on Image Processing , vol.15 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 17
    • 84940006138 scopus 로고    scopus 로고
    • Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., & Zisserman, A. (2012). The PASCAL visual object classes challenge 2012 (VOC2012) results
    • Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., & Zisserman, A. (2012). The PASCAL visual object classes challenge 2012 (VOC2012) results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.
  • 20
    • 80055060650 scopus 로고    scopus 로고
    • Comparison of sparse coding and kernel methods for histopathological classification of glioblastoma multiforme. In Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago
    • Han, J., Chang, H., Loss, L. A., Zhang, K., Baehner, F. L., Gray, J. W., Spellman, P. T., & Parvin, B. (2011). Comparison of sparse coding and kernel methods for histopathological classification of glioblastoma multiforme. In Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, IL, 30 March–2 April 2011, pp. 711–714. doi:10.1109/ISBI.2011.5872505.
    • (2011) IL, 30 March–2 April , vol.2011 , pp. 711-714
    • Han, J.1    Chang, H.2    Loss, L.A.3    Zhang, K.4    Baehner, F.L.5    Gray, J.W.6    Spellman, P.T.7    Parvin, B.8
  • 21
    • 33845597145 scopus 로고    scopus 로고
    • Large-scale learning with SVM and convolutional for generic object categorization. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)
    • Huang, F. J., & LeCun, Y. (2006). Large-scale learning with SVM and convolutional for generic object categorization. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), New York, 17–22 June 2006, pp. 284–291. doi:10.1109/CVPR.2006.164.
    • (2006) New York, 17–22 June , vol.2006 , pp. 284-291
    • Huang, F.J.1    LeCun, Y.2
  • 23
    • 77953183471 scopus 로고    scopus 로고
    • Jarrett, K., Kavukcuoglu, K., Ranzato, M., & LeCun, Y. (2009). What is the best multi-stage architecture for object recognition? In Proceedings international conference on computer vision (ICCV’09), IEEE
    • Jarrett, K., Kavukcuoglu, K., Ranzato, M., & LeCun, Y. (2009). What is the best multi-stage architecture for object recognition? In Proceedings international conference on computer vision (ICCV’09), IEEE.
  • 24
    • 70049083257 scopus 로고    scopus 로고
    • Fast inference in sparse coding algorithms with applications to object recognition. Technical report CBLL-TR-2008-12-01
    • Courant Institute, NYU:
    • Kavukcuoglu, K., Ranzato, M., & LeCun, Y. (2008). Fast inference in sparse coding algorithms with applications to object recognition. Technical report CBLL-TR-2008-12-01, Computational and Biological Learning Lab, Courant Institute, NYU.
    • (2008) Computational and Biological Learning Lab
    • Kavukcuoglu, K.1    Ranzato, M.2    LeCun, Y.3
  • 25
    • 78049396072 scopus 로고    scopus 로고
    • Texture based image recognition in microscopy images of diffuse gliomas with multi-class gentle boosting mechanism
    • Kong, J., Cooper, L., Sharma, A., Kurk, T., Brat, D., & Saltz, J. (2010). Texture based image recognition in microscopy images of diffuse gliomas with multi-class gentle boosting mechanism. ICASSAP, 457–460.
    • (2010) ICASSAP , pp. 457-460
    • Kong, J.1    Cooper, L.2    Sharma, A.3    Kurk, T.4    Brat, D.5    Saltz, J.6
  • 26
    • 84869425939 scopus 로고    scopus 로고
    • Biological interpretation of morphological patterns in histopathological whole slide images. In, ACM conference on bioinformatics, computational biology and biomedicine:
    • Kothari, S., Phan, J., Osunkoya, A., & Wang, M. (2012). Biological interpretation of morphological patterns in histopathological whole slide images. In: ACM conference on bioinformatics, computational biology and biomedicine.
    • (2012) & Wang, M
    • Kothari, S.1    Phan, J.2    Osunkoya, A.3
  • 28
    • 84864859719 scopus 로고    scopus 로고
    • Learning invariant features from tumor signatures. Proceedings of the 9th IEEE International Symposium on Biomedical Imaging: From Nano to Macro
    • Le, Q. V., Han, J., Gray, J. W., Spellman, P. T., Borowsky, A., & Parvin, B. (2012). Learning invariant features from tumor signatures. Proceedings of the 9th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Barcelona, 2–5 May 2012, pp. 302–305. doi:10.1109/ISBI.2012.6235544.
    • (2012) Barcelona, 2–5 May , vol.2012 , pp. 302-305
    • Le, Q.V.1    Han, J.2    Gray, J.W.3    Spellman, P.T.4    Borowsky, A.5    Parvin, B.6
  • 29
    • 84864036295 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms. In Advances in neural information processing systems 19, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver
    • Lee, H., Battle, A., Raina, R., & Ng, A. Y. (2006). Efficient sparse coding algorithms. In Advances in neural information processing systems 19, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, BC, 4–7 December 2006, pp. 801–808. http://books.nips.cc/papers/files/nips19/NIPS2006_0878.pdf.
    • (2006) BC, 4–7 December , vol.2006 , pp. 801-808
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.Y.4
  • 30
    • 84977773256 scopus 로고    scopus 로고
    • (2007). Sparse deep belief net model for visual area v2. In Advances in neural information processing systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver
    • Lee, H., Ekanadham, C., & Ng, A.Y. (2007). Sparse deep belief net model for visual area v2. In Advances in neural information processing systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, BC, 3–6 December 2007. http://books.nips.cc/papers/files/nips20/NIPS2007_0934.pdf.
    • (2007) , pp. 3-6
    • Lee, H.1    Ekanadham, C.2    Ng, A.Y.3
  • 31
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. In Proceedings of the IEEE, 86(11), 2278–2324.
    • (1998) In Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 34
    • 84881643610 scopus 로고    scopus 로고
    • Classification of tumor histopathology via sparse feature learning. In: Proceedings of ISBI
    • Nayak, N., Chang, H., Borowsky, A., Spellman, P., & Parvin, B. (2013). Classification of tumor histopathology via sparse feature learning. In: Proceedings of ISBI, 410–413.
    • (2013)
    • Nayak, N.1    Chang, H.2    Borowsky, A.3    Spellman, P.4    Parvin, B.5
  • 35
    • 84939998448 scopus 로고    scopus 로고
    • Poultney, C., Chopra, S., & Lecun, Y. (2006). Efficient learning of sparse representations with an energy-based model. In Advances in neural information processing systems
    • Poultney, C., Chopra, S., & Lecun, Y. (2006). Efficient learning of sparse representations with an energy-based model. In Advances in neural information processing systems NIPS 2006, MIT Press: Cambridge.
  • 36
    • 85161966246 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • Platt J, Koller D, Singer Y, Roweis S, (eds), MIT Press, Cambridge, MA:
    • Ranzato, M., Boureau, Y. L., & LeCun, Y. (2008). Sparse feature learning for deep belief networks. In J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in Neural Information Processing Systems 20 (pp. 1185–1192). Cambridge, MA: MIT Press.
    • (2008) Advances in Neural Information Processing Systems 20 , pp. 1185-1192
    • Ranzato, M.1    Boureau, Y.L.2    LeCun, Y.3
  • 37
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • Tropp, J., & Gilbert, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53, 4655–4666.
    • (2007) IEEE Transactions on Information Theory , vol.53 , pp. 4655-4666
    • Tropp, J.1    Gilbert, A.2
  • 39
    • 84887349346 scopus 로고    scopus 로고
    • Scale: Supervised and cascaded laplacian eigenmaps for visual object recognition based on nearest neighbors
    • Wu, R., Yu, Y., & Wang, W. (2013). Scale: Supervised and cascaded laplacian eigenmaps for visual object recognition based on nearest neighbors. CVPR, 867–874.
    • (2013) CVPR , pp. 867-874
    • Wu, R.1    Yu, Y.2    Wang, W.3
  • 41
    • 84884186023 scopus 로고    scopus 로고
    • The gaussian derivative model for spatial-temporal vision
    • Young, R. A., & Lesperance, R. M. (2001). The gaussian derivative model for spatial-temporal vision. I Cortical Model Spatial Vision, 2001, 3–4.
    • (2001) I Cortical Model Spatial Vision , vol.2001 , pp. 3-4
    • Young, R.A.1    Lesperance, R.M.2
  • 42
    • 84863401481 scopus 로고    scopus 로고
    • Nonlinear learning using local coordinate coding. In Advances in neural information processing systems. 22 & 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7–10 December 2009, Vancouver
    • Yu, K., Zhang, T., & Gong, Y. (2009). Nonlinear learning using local coordinate coding. In Advances in neural information processing systems. 22 & 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7–10 December 2009, Vancouver, British Columbia, pp. 2223–2231. http://books.nips.cc/papers/files/nips22/NIPS2009_0719.pdf.
    • (2009) British Columbia , pp. 2223-2231
    • Yu, K.1    Zhang, T.2    Gong, Y.3
  • 43
    • 84911451297 scopus 로고    scopus 로고
    • Classification of histology sections via multispectral convolutional sparse coding. 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
    • Zhou, Y., Chang, H., Barner, K. E., Spellman, P. T., & Parvin, B. (2014). Classification of histology sections via multispectral convolutional sparse coding. 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, 23–28 June 2014, pp. 3081–3088. doi:10.1109/CVPR.2014.394.
    • (2014) Columbus, 23–28 June , vol.2014 , pp. 3081-3088
    • Zhou, Y.1    Chang, H.2    Barner, K.E.3    Spellman, P.T.4    Parvin, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.