메뉴 건너뛰기




Volumn 19, Issue 5, 2012, Pages 824-832

Feature engineering combined with machine learning and rule-based methods for structured information extraction from narrative clinical discharge summaries

Author keywords

[No Author keywords available]

Indexed keywords

ACCESS TO INFORMATION; ARTICLE; DRUG DOSE; HUMAN; INFORMATION RETRIEVAL; LANGUAGE; MACHINE LEARNING; MEDICAL INFORMATION SYSTEM; MEDICAL RECORD; NOMENCLATURE; SUPPORT VECTOR MACHINE; ARTIFICIAL INTELLIGENCE; DATA MINING; ELECTRONIC MEDICAL RECORD; HOSPITAL DISCHARGE; LINGUISTICS; METHODOLOGY; NATURAL LANGUAGE PROCESSING;

EID: 84872242834     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2011-000776     Document Type: Article
Times cited : (90)

References (40)
  • 1
    • 84873819355 scopus 로고    scopus 로고
    • The Fourth i2b2/VA Challenge.
    • The Fourth i2b2/VA Challenge. https://www.i2b2.org/NLP/Relations/
  • 2
    • 84873839118 scopus 로고    scopus 로고
    • CRF++
    • CRF++. http://crfpp.sourceforge.net/
  • 3
    • 84873820480 scopus 로고    scopus 로고
    • Statistical Classifiers
    • Statistical Classifiers. http://research.microsoft.com/en-us/downloads/19f63ff3-06c7-4fa9-8ee0-35abffe0-5be/default.aspx
  • 5
    • 84873824287 scopus 로고    scopus 로고
    • Link Grammar Parser
    • Link Grammar Parser. http://www.link.cs.cmu.edu/link/
  • 6
    • 0030483615 scopus 로고    scopus 로고
    • Natural language processing in medicine: an overview.
    • Spyns P. Natural language processing in medicine: an overview. Methods Inf Med 1996;35:285-301.
    • (1996) Methods Inf Med , vol.35 , pp. 285-301
    • Spyns, P.1
  • 7
    • 0028402861 scopus 로고
    • Natural language processing and the representation of clinical data
    • Sager N, Lyman M, Bucknall C, et al. Natural language processing and the representation of clinical data. J Am Med Inform Assoc 1994;1:142-60.
    • (1994) J Am Med Inform Assoc , vol.1 , pp. 142-60
    • Sager, N.1    Lyman, M.2    Bucknall, C.3
  • 8
    • 0028403632 scopus 로고
    • A general natural-language text processor for clinical radiology
    • Friedman C, Alderson PO, Austin JH, et al. A general natural-language text processor for clinical radiology. J Am Med Inform Assoc 1994;1:161-74.
    • (1994) J Am Med Inform Assoc , vol.1 , pp. 161-74
    • Friedman, C.1    Alderson, P.O.2    Austin, J.H.3
  • 9
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: a review of recent research
    • Meystre SM, Savova GK, Kipper-Schuler KC, et al. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform 2008;128:128-44.
    • (2008) Yearb Med Inform , vol.128 , pp. 128-44
    • Meystre, S.M.1    Savova, G.K.2    Kipper-Schuler, K.C.3
  • 11
    • 77953917404 scopus 로고    scopus 로고
    • Event extraction for systems biology by text mining the literature
    • Ananiadou S, Pvvsalo S, Tsujii J, et al. Event extraction for systems biology by text mining the literature. Trends Biotechnol 2010;28:381-90.
    • (2010) Trends Biotechnol , vol.28 , pp. 381-90
    • Ananiadou, S.1    Pvvsalo, S.2    Tsujii, J.3
  • 12
    • 50649089620 scopus 로고    scopus 로고
    • Was the Patient Cured Understanding Semantic Categories and Their Relationships in Patient Records
    • M.S. Thesis. Cambridge, MA, USA: MIT
    • Sibanda TC. Was the Patient Cured? Understanding Semantic Categories and Their Relationships in Patient Records. M.S. Thesis. Cambridge, MA, USA: MIT, 2006.
    • (2006)
    • Sibanda, T.C.1
  • 13
    • 60949110325 scopus 로고    scopus 로고
    • Assessment of commercial NLP engines for medication information extraction from dictated clinical notes
    • Jagannathan V, Mullett CJ, Arbogast JG, et al. Assessment of commercial NLP engines for medication information extraction from dictated clinical notes. Int J Med Inform 2009;78:284-91.
    • (2009) Int J Med Inform , vol.78 , pp. 284-91
    • Jagannathan, V.1    Mullett, C.J.2    Arbogast, J.G.3
  • 14
    • 84873857783 scopus 로고    scopus 로고
    • A Shared Task of Multi-Label Classification
    • A Shared Task of Multi-Label Classification. http://computationalmedicine.org/challenge/previous
  • 15
    • 34548508913 scopus 로고    scopus 로고
    • Evaluating the state-of-the-art in automatic de-identification
    • Uzuner O, Luo Y, Szolovits P. Evaluating the state-of-the-art in automatic de-identification. J Am Med Inform Assoc 2007;14:550-63.
    • (2007) J Am Med Inform Assoc , vol.14 , pp. 550-63
    • Uzuner, O.1    Luo, Y.2    Szolovits, P.3
  • 16
    • 34548516061 scopus 로고    scopus 로고
    • Identifying patient smoking status from medical discharge records
    • Uzuner O, Goldstein I, Luo Y, et al. Identifying patient smoking status from medical discharge records. J Am Med Inform Assoc 2008;15:14-24.
    • (2008) J Am Med Inform Assoc , vol.15 , pp. 14-24
    • Uzuner, O.1    Goldstein, I.2    Luo, Y.3
  • 17
    • 67649352145 scopus 로고    scopus 로고
    • Recognizing obesity and co-morbidities in sparse data
    • Uzuner O. Recognizing obesity and co-morbidities in sparse data. J Am Med Inform Assoc 2009;16:561-70.
    • (2009) J Am Med Inform Assoc , vol.16 , pp. 561-70
    • Uzuner, O.1
  • 18
    • 78149480799 scopus 로고    scopus 로고
    • Extracting medication information from clinical text
    • Uzuner O, Solti I, Cadag E. Extracting medication information from clinical text. J Am Med Inform Assoc 2010;17:514-18.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 514-18
    • Uzuner, O.1    Solti, I.2    Cadag, E.3
  • 19
    • 78149474102 scopus 로고    scopus 로고
    • Community annotation experiment for ground truth generation for the i2b2 medication challenge
    • Uzuner O, Solti I, Xia F. Community annotation experiment for ground truth generation for the i2b2 medication challenge. J Am Med Inform Assoc 2010;17:519-23.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 519-23
    • Uzuner, O.1    Solti, I.2    Xia, F.3
  • 20
    • 84872856982 scopus 로고    scopus 로고
    • Rule-based approach for identifying assertions in clinical free-text data
    • Melbourne, Australia: Australasian Document Computing Symposium
    • Sun Y, Nguyen A, Geva S, et al. Rule-based approach for identifying assertions in clinical free-text data. Proceedings of Australasian Document Computing Symposium (ADCS 2010). Melbourne, Australia: Australasian Document Computing Symposium, 2010:100-3.
    • (2010) Proceedings of Australasian Document Computing Symposium (ADCS 2010) , pp. 100-3
    • Sun, Y.1    Nguyen, A.2    Geva, S.3
  • 21
    • 80053275620 scopus 로고    scopus 로고
    • Hybrid methods for improving information access in clinical documents: concept, assertion, and relation identification
    • Minard AL, Ligozat AL, Ben Abacha A, et al. Hybrid methods for improving information access in clinical documents: concept, assertion, and relation identification. J Am Med Inform Assoc 2011;18:588-93.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 588-93
    • Minard, A.L.1    Ligozat, A.L.2    Ben Abacha, A.3
  • 22
    • 84873858403 scopus 로고    scopus 로고
    • NegEx
    • NegEx. http://code.google.com/p/negex/
  • 23
    • 84873816045 scopus 로고    scopus 로고
    • ConText
    • ConText. http://code.google.com/p/negex/
  • 24
    • 84873881309 scopus 로고    scopus 로고
    • MESH Knowledge Base
    • MESH Knowledge Base. http://www.ncbi.nlm.nih.gov/mesh
  • 25
    • 84873813322 scopus 로고    scopus 로고
    • UMLS Knowledge Base.
    • UMLS Knowledge Base. http://www.nlm.nih.gov/research/umls
  • 26
    • 84873883405 scopus 로고    scopus 로고
    • Stemmer
    • Stemmer. http://tartarus.org/wmartin/PorterStemmer/
  • 27
    • 84873810485 scopus 로고    scopus 로고
    • Head Noun Finder
    • Head Noun Finder. http://nlp.cs.berkeley.edu/Main.html#Parsing
  • 28
    • 0142192295 scopus 로고    scopus 로고
    • Conditional Random Fields: Probabilistic models for segmenting and labeling sequence data
    • Williamstown, MA, USA: International Machine Learning Society
    • Lafferty J, McCallum A, Pereira F. Conditional Random Fields: Probabilistic models for segmenting and labeling sequence data. Proceedings of the 18th International Conference on Machine Learning (ICML 2001). Williamstown, MA, USA: International Machine Learning Society, 2001:282-9.
    • (2001) Proceedings of the 18th International Conference on Machine Learning (ICML 2001) , pp. 282-9
    • Lafferty, J.1    Mccallum, A.2    Pereira, F.3
  • 29
    • 0003922190 scopus 로고    scopus 로고
    • Pattern Classification
    • 2nd edn. New York: John Wiley & Sons Inc
    • Duda RO, Hart PE, Stork DG. Pattern Classification. 2nd edn. New York: John Wiley & Sons Inc, 2001.
    • (2001)
    • Duda, R.O.1    Hart, P.E.2    Stork, D.G.3
  • 30
  • 31
    • 84873846962 scopus 로고    scopus 로고
    • Medical Suffixes
    • Medical Suffixes. http://www.macroevolution.net/medical-suffixes.html
  • 32
    • 78149474640 scopus 로고    scopus 로고
    • Extracting medical information from narrative patient records: the case of medication-related information
    • Deleger L, Grouin C, Zweigenbaum P. Extracting medical information from narrative patient records: the case of medication-related information. J Am Med Inform Assoc 2010;17:555-8.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 555-8
    • Deleger, L.1    Grouin, C.2    Zweigenbaum, P.3
  • 34
    • 0034832960 scopus 로고    scopus 로고
    • Logistic regression in the medical literature: standards for use and reporting, with particular attention to one medical domain
    • Bagley SC, White H, Golomb BA. Logistic regression in the medical literature: standards for use and reporting, with particular attention to one medical domain. J Clin Epidemiol 2001;54:979-85.
    • (2001) J Clin Epidemiol , vol.54 , pp. 979-85
    • Bagley, S.C.1    White, H.2    Golomb, B.A.3
  • 36
    • 80054008332 scopus 로고    scopus 로고
    • A comparative study of syntactic parsers for event extraction
    • Uppsala, Sweden: Association for Computational Linguistics, 2010
    • Miwa M, Pyysalo S, Hara T, et al. A comparative study of syntactic parsers for event extraction. Proceedings of Natural Language Processing in Biomedicine (BioNLP 2010). Uppsala, Sweden: Association for Computational Linguistics, 2010:37-45.
    • (2010) Proceedings of Natural Language Processing in Biomedicine (BioNLP , pp. 37-45
    • Miwa, M.1    Pyysalo, S.2    Hara, T.3
  • 37
    • 77951600909 scopus 로고    scopus 로고
    • Event extraction with complex event classification using rich features
    • Miwa M, Saetre R, Kim JD, et al. Event extraction with complex event classification using rich features. J Bioinform Comput Biol 2010;8:131-46.
    • (2010) J Bioinform Comput Biol , vol.8 , pp. 131-46
    • Miwa, M.1    Saetre, R.2    Kim, J.D.3
  • 38
    • 80053292637 scopus 로고    scopus 로고
    • 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text
    • Uzuner O, South BR, Shen S, et al. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc 2011;18:552-6.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 552-6
    • Uzuner, O.1    South, B.R.2    Shen, S.3
  • 39
    • 84873870099 scopus 로고    scopus 로고
    • The Results from Top 10 Systems for the First Task.
    • The Results from Top 10 Systems for the First Task. https://www.i2b2.org/NLP/Relations/Download.php
  • 40
    • 80053268344 scopus 로고    scopus 로고
    • Automatic extraction of relations between medical concepts in clinical texts
    • Rink B, Harabagiu S, Roberts K. Automatic extraction of relations between medical concepts in clinical texts. J Am Med Inform Assoc 2011;18: 594-600
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 594-600
    • Rink, B.1    Harabagiu, S.2    Roberts, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.