메뉴 건너뛰기




Volumn , Issue , 2009, Pages 18-26

Annotating and recognising named entities in clinical notes

Author keywords

[No Author keywords available]

Indexed keywords

CLINICAL RESEARCH; COMPUTATIONAL LINGUISTICS; INFORMATION RETRIEVAL; LEARNING ALGORITHMS; MACHINE LEARNING; RANDOM PROCESSES; NATURAL LANGUAGE PROCESSING SYSTEMS; SEMANTICS; SUPERVISED LEARNING;

EID: 80053235919     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/1667884.1667888     Document Type: Conference Paper
Times cited : (59)

References (26)
  • 1
    • 0035752429 scopus 로고    scopus 로고
    • Effective mapping of biomedical text to the UMLS Metathesaurus: The MetaMap program
    • R. Aronson. 2001. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In Proceeding of the AMIA Symposium,17-21.
    • (2001) Proceeding of the AMIA Symposium , pp. 17-21
    • Aronson, R.1
  • 2
    • 0345604428 scopus 로고    scopus 로고
    • Towards linking patients and clinical information: Detecting UMLS concepts in e-mail
    • F. Brennan and A. Aronson 2003. Towards linking patients and clinical information: detecting UMLS concepts in e-mail. Journal of Biomedical Informatics,36(4/5),334-341.
    • (2003) Journal of Biomedical Informatics , vol.36 , Issue.4-5 , pp. 334-341
    • Brennan, F.1    Aronson, A.2
  • 3
    • 0004232440 scopus 로고    scopus 로고
    • College of American Pathologists
    • A. Côté and American Veterinary Medical Association and College of American Pathologists. 2009. Snomed International. College of American Pathologists.
    • (2009) Snomed International
    • Côté, A.1
  • 4
    • 0034567167 scopus 로고    scopus 로고
    • A broad coverage natural language processing system
    • C. Friedman 2000. A broad coverage natural language processing system. In Proceedings of the AMIA Symposium,270-274.
    • (2000) Proceedings of the AMIA Symposium , pp. 270-274
    • Friedman, C.1
  • 6
    • 24044436536 scopus 로고    scopus 로고
    • MediClass: A system for detecting and classifying encounter-based clinical events in any electronic medical record
    • B. Hazlehurst, R. Frost, F. Sittig, and J. Stevens. 2005. MediClass: A System for Detecting and Classifying Encounter-based Clinical Events in Any Electronic Medical Record. Journal of the American Medical Informatics Association,12(5),517-529.
    • (2005) Journal of the American Medical Informatics Association , vol.12 , Issue.5 , pp. 517-529
    • Hazlehurst, B.1    Frost, R.2    Sittig, F.3    Stevens, J.4
  • 8
    • 18044384608 scopus 로고    scopus 로고
    • Improved identification of noun phrases in clinical radiology reports using a high-performance statistical natural language parser augmented with the UMLS specialist lexicon
    • Y. Huang, J. Lowe, D. Klein, and J. Cucina. 2005. Improved Identification of Noun Phrases in Clinical Radiology Reports Using a High-Performance Statistical Natural Language Parser Augmented with the UMLS Specialist Lexicon. Journal of the American Medical Informatics Association,12(3),275-285.
    • (2005) Journal of the American Medical Informatics Association , vol.12 , Issue.3 , pp. 275-285
    • Huang, Y.1    Lowe, J.2    Klein, D.3    Cucina, J.4
  • 9
    • 44649165797 scopus 로고    scopus 로고
    • Assessment of disease named entity recognition on a corpus of annotated sentences
    • A. Jimeno, et al. 2008. Assessment of disease named entity recognition on a corpus of annotated sentences. BMC Bioinformatics,9(3).
    • (2008) BMC Bioinformatics , vol.9 , Issue.3
    • Jimeno, A.1
  • 10
    • 4944229711 scopus 로고    scopus 로고
    • GENIA corpus - A semantically annotated corpus for bio-textmining
    • D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. 2003. GENIA corpus - a semantically annotated corpus for bio-textmining. Journal of Bioinformatics, 19(1),180-182.
    • (2003) Journal of Bioinformatics , vol.19 , Issue.1 , pp. 180-182
    • Kim, D.1    Ohta, T.2    Tateisi, Y.3    Tsujii, J.4
  • 11
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty et al. 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data Machine learning-international workshop then conference, 282-289.
    • (2001) Machine Learning-international Workshop Then Conference , pp. 282-289
    • Lafferty, J.1
  • 12
    • 0027755702 scopus 로고
    • The unified medical language system
    • A. Lindberg et al. 1993. The Unified Medical Language System. Methods Inf Med.
    • (1993) Methods Inf Med.
    • Lindberg, A.1
  • 14
    • 0000747663 scopus 로고    scopus 로고
    • Maximum entropy Markov models for information extraction and segmentation
    • A. McCallum, et al. 2000. Maximum entropy Markov models for information extraction and segmentation Proc. 17th International Conf. on Machine Learning, 591-598.
    • (2000) Proc. 17th International Conf. on Machine Learning , pp. 591-598
    • McCallum, A.1
  • 19
    • 0024610919 scopus 로고
    • A tutorial on hidden markov models and selected applications inspeech recognition
    • R. Rabiner 1989. A tutorial on hidden Markov models and selected applications inspeech recognition Proceedings of the IEEE,77(2), 257-286.
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, R.1
  • 21
    • 33947384560 scopus 로고    scopus 로고
    • NERBio: Using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity
    • R. Tsai, L. Sung, J. Dai, C. Hung, Y. Sung, and L. Hsu. 2006. NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity BMC Bioinformatics.
    • (2006) BMC Bioinformatics
    • Tsai, R.1    Sung, L.2    Dai, J.3    Hung, C.4    Sung, Y.5    Hsu, L.6
  • 24
    • 2442702846 scopus 로고    scopus 로고
    • Recognizing names in biomedical texts: A machine learning approach
    • G. Zhou, J. Zhang, J. Su, D. Shen, and L. Tan. 2004. Recognizing Names in Biomedical Texts: a Machine Learning Approach BioInformatics, 20(7) 1178-1190.
    • (2004) BioInformatics , vol.20 , Issue.7 , pp. 1178-1190
    • Zhou, G.1    Zhang, J.2    Su, J.3    Shen, D.4    Tan, L.5
  • 25
    • 33749577286 scopus 로고    scopus 로고
    • MaxMatcher: Biological concept extraction using approximate dictionary lookup
    • X. Zhou, et al. 2006. MaxMatcher: Biological Concept Extraction Using Approximate Dictionary Lookup. Proc PRICAI,1145-1149.
    • (2006) Proc PRICAI , pp. 1145-1149
    • Zhou, X.1
  • 26
    • 4544274692 scopus 로고    scopus 로고
    • IndexFinder: A method of extracting key concepts from clinical texts for indexing
    • Q. Zou. 2003. IndexFinder: A Method of Extracting Key Concepts from Clinical Texts for Indexing. Proc AMIA Symp,763-767.
    • (2003) Proc AMIA Symp , pp. 763-767
    • Zou, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.