메뉴 건너뛰기




Volumn 26, Issue 4, 2014, Pages 761-780

Large margin low rank tensor analysis

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; AUTOMATED PATTERN RECOGNITION; HUMAN; LEARNING; PATTERN RECOGNITION; RECOGNITION;

EID: 84896845961     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00570     Document Type: Letter
Times cited : (20)

References (45)
  • 1
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • Baudat, G., & Anouar, F. (2000). Generalized discriminant analysis using a kernel approach. Neural Computation, 12(10), 2385-2404.
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 2
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373-1396.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 84864073449 scopus 로고    scopus 로고
    • Greedy layer-wise training of deep networks
    • B. Scḧolkopf, J. C. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
    • Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2006). Greedy layer-wise training of deep networks. In B. Scḧolkopf, J. C. Platt, & T. Hoffman (Eds.), Advancess in neural information processing systems, 19 (pp. 153-160). Cambridge, MA: MIT Press.
    • (2006) Advancess in neural information processing systems , vol.19 , pp. 153-160
    • Bengio, Y.1    Lamblin, P.2    Popovici, D.3    Larochelle, H.4
  • 4
    • 4344635655 scopus 로고    scopus 로고
    • Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering
    • S. Thr̈un, L. K. Saul, & B. Scḧolkopf (Eds.), Cambridge, MA: MIT Press
    • Bengio, Y., Paiement, J.-F., Vincent, P., Delalleau, O., Roux, N.L., & Ouimet, M. (2003).Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering. In S. Thr ̈un, L. K. Saul, & B. Scḧolkopf (Eds.), Advances in neural information processing systems, 16. Cambridge, MA: MIT Press.
    • (2003) Advances in neural information processing systems , vol.16
    • Bengio, Y.1    Paiement, J.-F.2    Vincent, P.3    Delalleau, O.4    Roux, N.L.5    Ouimet, M.6
  • 6
    • 84863765049 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • Cand'es, E., & Recht, B. (2012). Exact matrix completion via convex optimization. Commun. ACM, 55(6), 111-119.
    • (2012) Commun. ACM , vol.55 , Issue.6 , pp. 111-119
    • Cand'es, E.1    Recht, B.2
  • 7
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Near-optimal matrix completion
    • Cand'es, E., & Tao, T. (2010). The power of convex relaxation: Near-optimal matrix completion. IEEE Transactions on Information Theory, 56(5), 2053-2080.
    • (2010) IEEE Transactions on Information Theory , vol.56 , Issue.5 , pp. 2053-2080
    • Cand'es, E.1    Tao, T.2
  • 8
    • 0003882879 scopus 로고    scopus 로고
    • Providence, RI: AmericanMathematical Society
    • Chung, F. R. K. (1997). Spectral graph theory. Providence, RI: AmericanMathematical Society.
    • (1997) Spectral graph theory
    • Chung, F.R.K.1
  • 9
    • 0028424239 scopus 로고
    • Improving generalization with active learning machine learning
    • Cohn, D., Ladner, R., & Waibel, A. (1994). Improving generalization with active learning machine learning. Machine Learning, 15, 201-221.
    • (1994) Machine Learning , vol.15 , pp. 201-221
    • Cohn, D.1    Ladner, R.2    Waibel, A.3
  • 11
    • 0024053929 scopus 로고
    • Complete discrete 2D Gabor transforms by neural networks for image analysis and compression
    • Daugman, J. G. (1988). Complete discrete 2D Gabor transforms by neural networks for image analysis and compression. IEEE Transactions on Acoustics, Speech and Signal Processing, 36(7), 1169-1179.
    • (1988) IEEE Transactions on Acoustics, Speech and Signal Processing , vol.36 , Issue.7 , pp. 1169-1179
    • Daugman, J.G.1
  • 12
    • 55349142218 scopus 로고    scopus 로고
    • Tensor rank and the ill-posedness of the best low-rank approximation problem
    • de Silva, V., & Lim, L.-H. (2008). Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Analysis Applications, 30(3), 1084-1127.
    • (2008) SIAM J. Matrix Analysis Applications , vol.30 , Issue.3 , pp. 1084-1127
    • de Silva, V.1    Lim, L.-H.2
  • 13
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(7), 179-188.
    • (1936) Annals of Eugenics , vol.7 , Issue.7 , pp. 179-188
    • Fisher, R.A.1
  • 14
    • 39549087054 scopus 로고    scopus 로고
    • Image classification using correlation tensor analysis
    • Fu, Y., & Huang, T. S. (2008). Image classification using correlation tensor analysis. IEEE Transactions on Image Processing, 17(2), 226-234.
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.2 , pp. 226-234
    • Fu, Y.1    Huang, T.S.2
  • 16
    • 36849072045 scopus 로고    scopus 로고
    • Graph implementations for nonsmooth convex programs
    • V. Blondel, S. Boyd, & H. Kimura (Eds.), New York: Springer-Verlag
    • Grant, M., & Boyd, S. (2008). Graph implementations for nonsmooth convex programs. In V. Blondel, S. Boyd, & H. Kimura (Eds.), Recent advances in learning and control (pp. 95-110). New York: Springer-Verlag.
    • (2008) Recent advances in learning and control , pp. 95-110
    • Grant, M.1    Boyd, S.2
  • 17
    • 8644228268 scopus 로고    scopus 로고
    • Locality preserving projections
    • S. Thr ̈un, L. K. Saul,& B. Scḧolkopf (Eds.), Cambridge, MA: MIT Press
    • He, X., & Niyogi, P. (2003). Locality preserving projections. In S. Thr ̈un, L. K. Saul,& B. Scḧolkopf (Eds.), Advances in neural information processing systems, 16. Cambridge, MA: MIT Press.
    • (2003) Advances in neural information processing systems , vol.16
    • He, X.1    Niyogi, P.2
  • 18
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 19
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 21
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3), 455-500.
    • (2009) SIAM Review , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 22
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with gaussian process latent variable models
    • Lawrence, N. D. (2005). Probabilistic non-linear principal component analysis with gaussian process latent variable models. Journal of Machine Learning Research, 6, 1783-1816.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1783-1816
    • Lawrence, N.D.1
  • 23
    • 15344347807 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • S. Haykin & B. Kosko (Eds.), Piscataway, NJ: IEEE Press
    • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (2001). Gradient-based learning applied to document recognition. In S. Haykin & B. Kosko (Eds.), Intelligent signal processing (pp. 306-351). Piscataway, NJ: IEEE Press.
    • (2001) Intelligent signal processing , pp. 306-351
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 24
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee, D. D.,&Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788-791.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 25
    • 78149327155 scopus 로고    scopus 로고
    • Tensor distance based multilinear localitypreserved maximum information embedding
    • Liu, Y., Liu, Y., & Chan, K. C. C. (2010). Tensor distance based multilinear localitypreserved maximum information embedding. IEEE Transactions on Neural Networks, 21(11), 1848-1854.
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.11 , pp. 1848-1854
    • Liu, Y.1    Liu, Y.2    Chan, K.C.C.3
  • 26
    • 80052781908 scopus 로고    scopus 로고
    • Sparse non-negative tensor factorization using columnwise coordinate descent
    • Liu, J., Liu, J., Wonka, P., & Ye, J. (2012). Sparse non-negative tensor factorization using columnwise coordinate descent. Pattern Recognition, 45(1), 649-656.
    • (2012) Pattern Recognition , vol.45 , Issue.1 , pp. 649-656
    • Liu, J.1    Liu, J.2    Wonka, P.3    Ye, J.4
  • 27
    • 79957957723 scopus 로고    scopus 로고
    • Fixed point and Bregman iterative methods for matrix rank minimization
    • Ma, S., Goldfarb, D., & Chen, L. (2011). Fixed point and Bregman iterative methods for matrix rank minimization. Math. Program., 128(1-2), 321-353.
    • (2011) Math. Program. , vol.128 , Issue.1-2 , pp. 321-353
    • Ma, S.1    Goldfarb, D.2    Chen, L.3
  • 28
  • 29
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl. Data Eng., 22(10), 1345-1359.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 30
    • 3042591803 scopus 로고
    • Natural categories
    • Rosch, E. (1973). Natural categories. Cognitive Psychol., 4, 328-350.
    • (1973) Cognitive Psychol , vol.4 , pp. 328-350
    • Rosch, E.1
  • 31
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 32
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scḧolkopf, B., Smola, A. J., & M̈ Uller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5), 1299-1319.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scḧolkopf, B.1    Smola, A.J.2    M̈ Uller, K.-R.3
  • 33
    • 0034704189 scopus 로고    scopus 로고
    • The manifold ways of perception
    • Seung, H. S.,&Lee, D. D. (2000). The manifold ways of perception. Science, 290(5500), 2268-2269.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2268-2269
    • Seung, H.S.1    Lee, D.D.2
  • 34
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • Sugiyama, M. (2007). Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. Journal of Machine Learning Research, 8, 1027-1061.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 36
    • 0034704229 scopus 로고    scopus 로고
    • Aglobal geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J. B., de Silva, V.,&Langford, J. C. (2000).Aglobal geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319-2323.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 37
    • 79952512265 scopus 로고    scopus 로고
    • How to grow a mind: Statistics, structure, and abstraction
    • Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279-1285.
    • (2011) Science , vol.331 , Issue.6022 , pp. 1279-1285
    • Tenenbaum, J.B.1    Kemp, C.2    Griffiths, T.L.3    Goodman, N.D.4
  • 39
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11, 3371-3408.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 41
    • 33749257955 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor Classification
    • Y. Weis, B. Scḧolkopf, & J. Platt (Eds.), Cambridge, MA: MIT Press
    • Weinberger, K. Q., Blitzer, J., & Saul, L. K. (2005). Distance metric learning for large margin nearest neighbor Classification. In Y. Weis, B. Scḧolkopf, & J. Platt (Eds.), Advances in neural information processing systems, 18. Cambridge, MA: MIT Press.
    • (2005) Advances in neural information processing systems , vol.18
    • Weinberger, K.Q.1    Blitzer, J.2    Saul, L.K.3
  • 43
    • 0742268833 scopus 로고    scopus 로고
    • Two-dimensional PCA: A new approach to appearance-based face representation and recognition
    • Yang, J., Zhang, D., Frangi, A. F., & Yang, J.-Y. (2004). Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell., 26(1), 131-137.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.1 , pp. 131-137
    • Yang, J.1    Zhang, D.2    Frangi, A.F.3    Yang, J.-Y.4
  • 44
    • 27244450132 scopus 로고    scopus 로고
    • Two-dimensional linear discriminant analysis
    • L. Saul, Y. Weiss, & L. Bottou (Eds.), Cambridge, MA: MIT Press
    • Ye, J., Janardan, R., & Li, Q. (2004). Two-dimensional linear discriminant analysis. In L. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17. Cambridge, MA: MIT Press.
    • (2004) Advances in neural information processing systems , vol.17
    • Ye, J.1    Janardan, R.2    Li, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.