메뉴 건너뛰기




Volumn 78, Issue 3, 2015, Pages 1961-1978

Typhoon-induced slope collapse assessment using a novel bee colony optimized support vector classifier

Author keywords

Artificial bee colony; Machine learning; Support vector classifier; Typhoon induced slope collapse

Indexed keywords

ALGORITHM; ARTIFICIAL INTELLIGENCE; SLOPE FAILURE; TYPHOON;

EID: 84938998538     PISSN: 0921030X     EISSN: 15730840     Source Type: Journal    
DOI: 10.1007/s11069-015-1813-8     Document Type: Article
Times cited : (37)

References (49)
  • 2
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4):537–550
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 4
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30(7):1145–1159
    • (1997) Pattern Recogn , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 5
    • 84923095568 scopus 로고
    • The investigation and remedy on the slope failure of Mt. So-San. Hazard Mitigation Report No. 77-12
    • Taiwan, Republic of China
    • Chen SZ, Hu LJ, and Chen GH (1988) The investigation and remedy on the slope failure of Mt. So-San. Hazard Mitigation Report No. 77-12, National Science Council, Taiwan, Republic of China
    • (1988) National Science Council
    • Chen, S.Z.1    Hu, L.J.2    Chen, G.H.3
  • 6
    • 84881378651 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machines and artificial bee colony algorithm
    • Ali M, Bosse T, Hindriks K, Hoogendoorn M, Jonker C, Treur J, (eds), Springer, Berlin
    • Chen M-Y, Chen C-C, Liu J-Y (2013) Credit rating analysis with support vector machines and artificial bee colony algorithm. In: Ali M, Bosse T, Hindriks K, Hoogendoorn M, Jonker C, Treur J (eds) Recent trends in applied artificial intelligence. Springer, Berlin, pp 528–534
    • (2013) Recent trends in applied artificial intelligence , pp. 528-534
    • Chen, M.-Y.1    Chen, C.-C.2    Liu, J.-Y.3
  • 7
    • 84923092979 scopus 로고    scopus 로고
    • Groutability prediction of microfine cement based soil improvement using evolutionary LS-SVM inference model
    • Cheng M-Y, Hoang N-D (2014a) Groutability prediction of microfine cement based soil improvement using evolutionary LS-SVM inference model. J Civ Eng Manag 20(6):1–10
    • (2014) J Civ Eng Manag , vol.20 , Issue.6
    • Cheng, M.-Y.1    Hoang, N.-D.2
  • 8
    • 84902436390 scopus 로고    scopus 로고
    • Groutability estimation of grouting processes with microfine cements using an evolutionary instance-based learning approach
    • Cheng M, Hoang N (2014b) Groutability estimation of grouting processes with microfine cements using an evolutionary instance-based learning approach. J Comput Civ Eng ASCE 28(4):04014014
    • (2014) J Comput Civ Eng ASCE , vol.28 , Issue.4 , pp. 04014014
    • Cheng, M.1    Hoang, N.2
  • 9
    • 0037217302 scopus 로고    scopus 로고
    • Automated safety monitoring and diagnosis system for unstable slopes
    • Cheng MY, Ko CH (2003) Automated safety monitoring and diagnosis system for unstable slopes. Comput Aided Civ Inf 18(1):64–77
    • (2003) Comput Aided Civ Inf , vol.18 , Issue.1 , pp. 64-77
    • Cheng, M.Y.1    Ko, C.H.2
  • 10
    • 84857367962 scopus 로고    scopus 로고
    • Risk preference based support vector machine inference model for slope collapse prediction
    • Cheng M-Y, Wu Y-W, Chen K-L (2011) Risk preference based support vector machine inference model for slope collapse prediction. Autom Constr 22:175–181
    • (2011) Autom Constr , vol.22 , pp. 175-181
    • Cheng, M.-Y.1    Wu, Y.-W.2    Chen, K.-L.3
  • 11
    • 85027938350 scopus 로고    scopus 로고
    • A novel hybrid intelligent approach for contractor default status prediction
    • Cheng M-Y, Hoang N-D, Limanto L, Wu Y-W (2014) A novel hybrid intelligent approach for contractor default status prediction. Knowl Based Syst 71:314–321
    • (2014) Knowl Based Syst , vol.71 , pp. 314-321
    • Cheng, M.-Y.1    Hoang, N.-D.2    Limanto, L.3    Wu, Y.-W.4
  • 12
    • 79551581637 scopus 로고    scopus 로고
    • Predicting rainfall-induced landslide potential along a mountain road in Taiwan
    • Ching J, Liao H-J, Lee J-Y (2011) Predicting rainfall-induced landslide potential along a mountain road in Taiwan. Geotechnique 61(2):153–166
    • (2011) Geotechnique , vol.61 , Issue.2 , pp. 153-166
    • Ching, J.1    Liao, H.-J.2    Lee, J.-Y.3
  • 13
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: introduction and applications
    • Dibike Y, Velickov S, Solomatine D, Abbott M (2001) Model induction with support vector machines: introduction and applications. J Comput Civ Eng ASCE 15(3):208–216
    • (2001) J Comput Civ Eng ASCE , vol.15 , Issue.3 , pp. 208-216
    • Dibike, Y.1    Velickov, S.2    Solomatine, D.3    Abbott, M.4
  • 14
    • 34848842523 scopus 로고    scopus 로고
    • Computational intelligence tools for the prediction of slope performance
    • Ferentinou MD, Sakellariou MG (2007) Computational intelligence tools for the prediction of slope performance. Comput Geotech 34(5):362–384
    • (2007) Comput Geotech , vol.34 , Issue.5 , pp. 362-384
    • Ferentinou, M.D.1    Sakellariou, M.G.2
  • 15
    • 34848870321 scopus 로고    scopus 로고
    • Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data
    • Goh ATC, Goh SH (2007) Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data. Comput Geotech 34(5):410–421
    • (2007) Comput Geotech , vol.34 , Issue.5 , pp. 410-421
    • Goh, A.T.C.1    Goh, S.H.2
  • 16
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 18
    • 57349184673 scopus 로고    scopus 로고
    • Data mining: concepts and techniques
    • Elsevier Inc., USA
    • Han J and Kamber M (2006) Data mining: concepts and techniques. Morgan Kaufmann Publisher, Elsevier Inc., USA
    • (2006) Morgan Kaufmann Publisher
    • Han, J.1    Kamber, M.2
  • 19
    • 80054881343 scopus 로고    scopus 로고
    • A study of landslide damage risk evaluation model for mountain roads. MS Thesis, Department of Construction Engineering
    • Hsu JB (2006) A study of landslide damage risk evaluation model for mountain roads. MS Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology
    • (2006) National Taiwan University of Science and Technology
    • Hsu, J.B.1
  • 20
    • 14644390912 scopus 로고    scopus 로고
    • Using AUC and accuracy in evaluating learning algorithms
    • Jin H, Ling CX (2005) Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng 17(3):299–310
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , Issue.3 , pp. 299-310
    • Jin, H.1    Ling, C.X.2
  • 22
    • 67349273050 scopus 로고    scopus 로고
    • A comparative study of artificial bee colony algorithm
    • Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132
    • (2009) Appl Math Comput , vol.214 , Issue.1 , pp. 108-132
    • Karaboga, D.1    Akay, B.2
  • 23
    • 84902014292 scopus 로고    scopus 로고
    • Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression
    • Kavzoglu T, Sahin E, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11(3):425–439
    • (2014) Landslides , vol.11 , Issue.3 , pp. 425-439
    • Kavzoglu, T.1    Sahin, E.2    Colkesen, I.3
  • 24
    • 0036933407 scopus 로고    scopus 로고
    • Input feature selection by mutual information based on Parzen window
    • Kwak N, Choi C-H (2002) Input feature selection by mutual information based on Parzen window. IEEE Trans Pattern Anal Mach Intell 24(12):1667–1671
    • (2002) IEEE Trans Pattern Anal Mach Intell , vol.24 , Issue.12 , pp. 1667-1671
    • Kwak, N.1    Choi, C.-H.2
  • 25
    • 59249106913 scopus 로고    scopus 로고
    • A support vector machine model for contractor prequalification
    • Lam KC, Palaneeswaran E, Yu C-Y (2009) A support vector machine model for contractor prequalification. Autom Constr 18(3):321–329
    • (2009) Autom Constr , vol.18 , Issue.3 , pp. 321-329
    • Lam, K.C.1    Palaneeswaran, E.2    Yu, C.-Y.3
  • 26
    • 84938970392 scopus 로고
    • A study on mechanical properties of representative rocks at Mt. So-San and in situ measurements of slope movements. Report to the National Science Council No. 77-0414-P006-12B
    • Taiwan, Republic of China
    • Lee DH (1989) A study on mechanical properties of representative rocks at Mt. So-San and in situ measurements of slope movements. Report to the National Science Council No. 77-0414-P006-12B, National Cheng Kung University, Taiwan, Republic of China
    • (1989) National Cheng Kung University
    • Lee, D.H.1
  • 28
    • 62349133502 scopus 로고    scopus 로고
    • Assessment of highway slope failure using neural networks
    • Lee T-L, Lin H-M, Lu Y-P (2009) Assessment of highway slope failure using neural networks. J Zhejiang Univ Sci A 10(1):101–108
    • (2009) J Zhejiang Univ Sci A , vol.10 , Issue.1 , pp. 101-108
    • Lee, T.-L.1    Lin, H.-M.2    Lu, Y.-P.3
  • 29
    • 54949099314 scopus 로고    scopus 로고
    • Earthquake-induced landslide hazard and vegetation recovery assessment using remotely sensed data and a neural network-based classifier: a case study in central Taiwan
    • Lin W-T, Chou W-C, Lin C-Y (2008) Earthquake-induced landslide hazard and vegetation recovery assessment using remotely sensed data and a neural network-based classifier: a case study in central Taiwan. Nat Hazards 47(3):331–347
    • (2008) Nat Hazards , vol.47 , Issue.3 , pp. 331-347
    • Lin, W.-T.1    Chou, W.-C.2    Lin, C.-Y.3
  • 30
    • 61349138155 scopus 로고    scopus 로고
    • Neural network-based model for assessing failure potential of highway slopes in the Alishan, Taiwan area: pre- and post-earthquake investigation
    • Lin H-M, Chang S-K, Wu J-H, Juang CH (2009) Neural network-based model for assessing failure potential of highway slopes in the Alishan, Taiwan area: pre- and post-earthquake investigation. Eng Geol 104(3–4):280–289
    • (2009) Eng Geol , vol.104 , Issue.3-4 , pp. 280-289
    • Lin, H.-M.1    Chang, S.-K.2    Wu, J.-H.3    Juang, C.H.4
  • 31
    • 77958001182 scopus 로고    scopus 로고
    • The use of hybrid manifold learning and support vector machines in the prediction of business failure
    • Lin F, Yeh C-C, Lee M-Y (2011) The use of hybrid manifold learning and support vector machines in the prediction of business failure. Knowl Based Syst 24(1):95–101
    • (2011) Knowl Based Syst , vol.24 , Issue.1 , pp. 95-101
    • Lin, F.1    Yeh, C.-C.2    Lee, M.-Y.3
  • 32
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics
    • López V, Fernández A, García S, Palade V, Herrera F (2013) An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inform Sci 250:113–141
    • (2013) Inform Sci , vol.250 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 33
    • 0742322765 scopus 로고    scopus 로고
    • Artificial neural networks and grey systems for the prediction of slope stability
    • Lu P, Rosenbaum MS (2003) Artificial neural networks and grey systems for the prediction of slope stability. Nat Hazards 30(3):383–398
    • (2003) Nat Hazards , vol.30 , Issue.3 , pp. 383-398
    • Lu, P.1    Rosenbaum, M.S.2
  • 34
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4):525–533
    • (1993) Neural Netw , vol.6 , Issue.4 , pp. 525-533
    • Moller, M.F.1
  • 35
    • 79953278155 scopus 로고    scopus 로고
    • Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey
    • Nefeslioglu HA, Sezer E, Gokceoglu C, Bozkir AS, Duman TY (2010) Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Math Probl Eng 2010:1–15. doi:10.1155/2010/901095
    • (2010) Math Probl Eng , vol.2010
    • Nefeslioglu, H.A.1    Sezer, E.2    Gokceoglu, C.3    Bozkir, A.S.4    Duman, T.Y.5
  • 36
    • 33746870002 scopus 로고    scopus 로고
    • Support vector machines-based modelling of seismic liquefaction potential
    • Pal M (2006) Support vector machines-based modelling of seismic liquefaction potential. Int J Numer Anal Meth Geomech 30:983–996
    • (2006) Int J Numer Anal Meth Geomech , vol.30 , pp. 983-996
    • Pal, M.1
  • 37
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H, Fulmi L, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Fulmi, L.2    Ding, C.3
  • 39
    • 24644514246 scopus 로고    scopus 로고
    • Slope shape effects on erosion: a laboratory study
    • Rieke-Zapp DH, Nearing MA (2005) Slope shape effects on erosion: a laboratory study. Soil Sci Soc Am J 69:1463–1471
    • (2005) Soil Sci Soc Am J , vol.69 , pp. 1463-1471
    • Rieke-Zapp, D.H.1    Nearing, M.A.2
  • 40
    • 54949157726 scopus 로고    scopus 로고
    • Slope stability analysis: a support vector machine approach
    • Samui P (2008) Slope stability analysis: a support vector machine approach. Environ Geol 56(2):255–267
    • (2008) Environ Geol , vol.56 , Issue.2 , pp. 255-267
    • Samui, P.1
  • 41
    • 80053562933 scopus 로고    scopus 로고
    • Least square support vector machine and relevance vector machine for evaluating seismic liquefaction potential using SPT
    • Samui P (2011) Least square support vector machine and relevance vector machine for evaluating seismic liquefaction potential using SPT. Nat Hazards 59(2):811–822
    • (2011) Nat Hazards , vol.59 , Issue.2 , pp. 811-822
    • Samui, P.1
  • 42
    • 9244259665 scopus 로고    scopus 로고
    • An application of support vector machines in bankruptcy prediction model
    • Shin K-S, Lee TS, Kim H-J (2005) An application of support vector machines in bankruptcy prediction model. Expert Syst Appl 28(1):127–135
    • (2005) Expert Syst Appl , vol.28 , Issue.1 , pp. 127-135
    • Shin, K.-S.1    Lee, T.S.2    Kim, H.-J.3
  • 43
    • 84966327201 scopus 로고    scopus 로고
    • An artificial intelligence approach for groutability estimation based on autotuning support vector machine
    • Tran H-H, Hoang N-D (2014) An artificial intelligence approach for groutability estimation based on autotuning support vector machine. J Constr Eng 2014:9
    • (2014) J Constr Eng , vol.2014 , pp. 9
    • Tran, H.-H.1    Hoang, N.-D.2
  • 44
    • 84918559956 scopus 로고    scopus 로고
    • Estimating landslide susceptibility through a artificial neural network classifier
    • Tsangaratos P and Benardos A (2014) Estimating landslide susceptibility through a artificial neural network classifier. Nat Hazards 74(3):1489–1516. doi:10.1007/s11069-014-1245-x
    • (2014) Nat Hazards , vol.74 , Issue.3 , pp. 1489-1516
    • Tsangaratos, P.1    Benardos, A.2
  • 45
    • 80053641608 scopus 로고    scopus 로고
    • An enforced support vector machine model for construction contractor default prediction
    • Tserng HP, Lin G-F, Tsai LK, Chen P-C (2011) An enforced support vector machine model for construction contractor default prediction. Autom Constr 20(8):1242–1249
    • (2011) Autom Constr , vol.20 , Issue.8 , pp. 1242-1249
    • Tserng, H.P.1    Lin, G.-F.2    Tsai, L.K.3    Chen, P.-C.4
  • 46
    • 84883204011 scopus 로고    scopus 로고
    • Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification
    • Uzer MS, Yilmaz N, Inan O (2013) Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification. Sci World J 2013:10
    • (2013) Sci World J , vol.2013 , pp. 10
    • Uzer, M.S.1    Yilmaz, N.2    Inan, O.3
  • 48
    • 24144466551 scopus 로고    scopus 로고
    • Slope stability evaluation using back propagation neural networks
    • Wang HB, Xu WY, Xu RC (2005) Slope stability evaluation using back propagation neural networks. Eng Geol 80(3–4):302–315
    • (2005) Eng Geol , vol.80 , Issue.3-4 , pp. 302-315
    • Wang, H.B.1    Xu, W.Y.2    Xu, R.C.3
  • 49
    • 52949147068 scopus 로고    scopus 로고
    • Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China
    • Yao X, Tham LG, Dai FC (2008) Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology 101(4):572–582
    • (2008) Geomorphology , vol.101 , Issue.4 , pp. 572-582
    • Yao, X.1    Tham, L.G.2    Dai, F.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.