메뉴 건너뛰기




Volumn 71, Issue , 2014, Pages 314-321

A novel hybrid intelligent approach for contractor default status prediction

Author keywords

Differential Evolution; Financial default prediction; Hybrid intelligence; Imbalanced classification; Least Squares Support Vector Machine

Indexed keywords

BENCHMARKING; CONSTRUCTION INDUSTRY; CONTRACTORS; EVOLUTIONARY ALGORITHMS; FORECASTING; OPTIMIZATION; SUPERVISED LEARNING;

EID: 85027938350     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2014.08.009     Document Type: Article
Times cited : (27)

References (53)
  • 2
    • 70349143375 scopus 로고
    • Predicting construction contractor failure prior to contract award
    • J. Russell, and E. Jaselskis Predicting construction contractor failure prior to contract award J. Constr. Eng. Manage. 118 1992 791 811
    • (1992) J. Constr. Eng. Manage. , vol.118 , pp. 791-811
    • Russell, J.1    Jaselskis, E.2
  • 3
    • 46749111119 scopus 로고    scopus 로고
    • Comparing the performance of market-based and accounting-based bankruptcy prediction models
    • V. Agarwal, and R. Taffler Comparing the performance of market-based and accounting-based bankruptcy prediction models J. Bank. Finance 32 2008 1541 1551
    • (2008) J. Bank. Finance , vol.32 , pp. 1541-1551
    • Agarwal, V.1    Taffler, R.2
  • 4
    • 80053641608 scopus 로고    scopus 로고
    • An enforced support vector machine model for construction contractor default prediction
    • H.P. Tserng, G.-F. Lin, L.K. Tsai, and P.-C. Chen An enforced support vector machine model for construction contractor default prediction Autom. Constr. 20 2011 1242 1249
    • (2011) Autom. Constr. , vol.20 , pp. 1242-1249
    • Tserng, H.P.1    Lin, G.-F.2    Tsai, L.K.3    Chen, P.-C.4
  • 6
    • 0038123961 scopus 로고    scopus 로고
    • A review of financial ratio tools for predicting contractor insolvency
    • F. Edum-Fotwe, A. Price, and A. Thorpe A review of financial ratio tools for predicting contractor insolvency Constr. Manage. Econ. 14 1996 189 198
    • (1996) Constr. Manage. Econ. , vol.14 , pp. 189-198
    • Edum-Fotwe, F.1    Price, A.2    Thorpe, A.3
  • 7
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • E.I. Altman Financial ratios, discriminant analysis and the prediction of corporate bankruptcy J. Finance 23 1968 589 609
    • (1968) J. Finance , vol.23 , pp. 589-609
    • Altman, E.I.1
  • 8
    • 5244280862 scopus 로고    scopus 로고
    • Predicting contractor failure using stochastic dynamics of economic and financial variables
    • J. Russell, and H. Zhai Predicting contractor failure using stochastic dynamics of economic and financial variables J. Constr. Eng. Manage. 122 1996 183 191
    • (1996) J. Constr. Eng. Manage. , vol.122 , pp. 183-191
    • Russell, J.1    Zhai, H.2
  • 9
    • 0000808665 scopus 로고
    • On the pricing of corporate debt: The risk structure of interest rates
    • R.C. Merton On the pricing of corporate debt: the risk structure of interest rates J. Finance 29 1974 449 470
    • (1974) J. Finance , vol.29 , pp. 449-470
    • Merton, R.C.1
  • 10
    • 0037319532 scopus 로고    scopus 로고
    • A barrier option framework for corporate security valuation
    • P. Brockman, and H.J. Turtle A barrier option framework for corporate security valuation J. Financ. Econ. 67 2003 511 529
    • (2003) J. Financ. Econ. , vol.67 , pp. 511-529
    • Brockman, P.1    Turtle, H.J.2
  • 11
    • 84872309932 scopus 로고    scopus 로고
    • Integration of accounting-based and option-based models to predict construction contractor default
    • L.-K. Tsai, H.-P. Tserng, H.-H. Liao, P.-C. Chen, and W.-P. Wang Integration of accounting-based and option-based models to predict construction contractor default J. Mar. Sci. Technol. 20 2012 479 484
    • (2012) J. Mar. Sci. Technol. , vol.20 , pp. 479-484
    • Tsai, L.-K.1    Tserng, H.-P.2    Liao, H.-H.3    Chen, P.-C.4    Wang, W.-P.5
  • 13
    • 17844363481 scopus 로고    scopus 로고
    • Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
    • J.H. Min, and Y.-C. Lee Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters Expert Syst. Appl. 28 2005 603 614
    • (2005) Expert Syst. Appl. , vol.28 , pp. 603-614
    • Min, J.H.1    Lee, Y.-C.2
  • 14
    • 77958001182 scopus 로고    scopus 로고
    • The use of hybrid manifold learning and support vector machines in the prediction of business failure
    • F. Lin, C.-C. Yeh, and M.-Y. Lee The use of hybrid manifold learning and support vector machines in the prediction of business failure Knowl.-Based Syst. 24 2011 95 101
    • (2011) Knowl.-Based Syst. , vol.24 , pp. 95-101
    • Lin, F.1    Yeh, C.-C.2    Lee, M.-Y.3
  • 15
    • 71749096569 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks by multi-dimensional particle swarm optimization
    • S. Kiranyaz, T. Ince, A. Yildirim, and M. Gabbouj Evolutionary artificial neural networks by multi-dimensional particle swarm optimization Neur. Networks 22 2009 1448 1462
    • (2009) Neur. Networks , vol.22 , pp. 1448-1462
    • Kiranyaz, S.1    Ince, T.2    Yildirim, A.3    Gabbouj, M.4
  • 16
    • 64849117504 scopus 로고    scopus 로고
    • Application of least squares support vector machine for regression to reliability analysis
    • Z. Guo, and G. Bai Application of least squares support vector machine for regression to reliability analysis Chin. J. Aeronaut. 22 2009 160 166
    • (2009) Chin. J. Aeronaut. , vol.22 , pp. 160-166
    • Guo, Z.1    Bai, G.2
  • 19
    • 59749093654 scopus 로고    scopus 로고
    • Evolving least squares support vector machines for stock market trend mining
    • L. Yu, H. Chen, S. Wang, and K.K. Lai Evolving least squares support vector machines for stock market trend mining IEEE Trans. Evol. Comput. 13 2009 87 102
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , pp. 87-102
    • Yu, L.1    Chen, H.2    Wang, S.3    Lai, K.K.4
  • 20
    • 79952930723 scopus 로고    scopus 로고
    • Utilization of a least square support vector machine (LSSVM) for slope stability analysis
    • P. Samui, and D.P. Kothari Utilization of a least square support vector machine (LSSVM) for slope stability analysis Scientia Iranica 18 2011 53 58
    • (2011) Scientia Iranica , vol.18 , pp. 53-58
    • Samui, P.1    Kothari, D.P.2
  • 21
    • 33847324418 scopus 로고    scopus 로고
    • Prediction of the flow stress for 30 MnSi steel using evolutionary least squares support vector machine and mathematical models
    • A.-L. Chen, M.-L. Wang, K. Liu, Prediction of the flow stress for 30 MnSi steel using evolutionary least squares support vector machine and mathematical models, in: Proc. of the IEEE International Conference on Industrial Technology ICIT, 2005, pp. 963-968.
    • (2005) Proc. of the IEEE International Conference on Industrial Technology ICIT , pp. 963-968
    • Chen, A.-L.1    Wang, M.-L.2    Liu, K.3
  • 22
    • 84884501774 scopus 로고    scopus 로고
    • Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: A Taiwan case study
    • M.-Y. Cheng, N.-D. Hoang, and Y.-W. Wu Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: a Taiwan case study Autom. Constr. 35 2013 306 313
    • (2013) Autom. Constr. , vol.35 , pp. 306-313
    • Cheng, M.-Y.1    Hoang, N.-D.2    Wu, Y.-W.3
  • 23
    • 84871926704 scopus 로고    scopus 로고
    • Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm
    • W. Zhang, P. Niu, G. Li, and P. Li Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm Knowl.-Based Syst. 39 2013 34 44
    • (2013) Knowl.-Based Syst. , vol.39 , pp. 34-44
    • Zhang, W.1    Niu, P.2    Li, G.3    Li, P.4
  • 26
    • 0005891455 scopus 로고
    • A methodology for predicting company failure in the construction industry
    • A.F. Abidali, and F. Harris A methodology for predicting company failure in the construction industry Constr. Manage. Econ. 13 1995 189 196
    • (1995) Constr. Manage. Econ. , vol.13 , pp. 189-196
    • Abidali, A.F.1    Harris, F.2
  • 27
    • 0001953906 scopus 로고
    • Methodological issues related to the estimation of financial distress prediction models
    • M.E. Zmijewski Methodological issues related to the estimation of financial distress prediction models J. Account. Res. 22 1984 59 82
    • (1984) J. Account. Res. , vol.22 , pp. 59-82
    • Zmijewski, M.E.1
  • 28
    • 84862090694 scopus 로고    scopus 로고
    • Predicting construction contractor default with barrier option model
    • H. Tserng, H. Liao, E. Jaselskis, L. Tsai, and P. Chen Predicting construction contractor default with barrier option model J. Constr. Eng. Manage. 138 2012 621 630
    • (2012) J. Constr. Eng. Manage. , vol.138 , pp. 621-630
    • Tserng, H.1    Liao, H.2    Jaselskis, E.3    Tsai, L.4    Chen, P.5
  • 30
    • 20444432198 scopus 로고    scopus 로고
    • Predicting the risk of contractor default in Saudi Arabia utilizing artificial neural network (ANN) and genetic algorithm (GA) techniques
    • O.S. Al-Sobiei, D. Arditi, and G. Polat Predicting the risk of contractor default in Saudi Arabia utilizing artificial neural network (ANN) and genetic algorithm (GA) techniques Constr. Manage. Econ. 23 2005 423 430
    • (2005) Constr. Manage. Econ. , vol.23 , pp. 423-430
    • Al-Sobiei, O.S.1    Arditi, D.2    Polat, G.3
  • 31
    • 33747045112 scopus 로고    scopus 로고
    • Bankruptcy prediction with industry effects
    • S. Chava, and R.A. Jarrow Bankruptcy prediction with industry effects Rev. Finance 8 2004 537 569
    • (2004) Rev. Finance , vol.8 , pp. 537-569
    • Chava, S.1    Jarrow, R.A.2
  • 33
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J.A. Suykens, and J. Vandewalle Least squares support vector machine classifiers Neural Process. Lett. 9 1999 293 300
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.1    Vandewalle, J.2
  • 36
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces
    • R. Storn, and K. Price Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces J. Global Optim. 11 1997 341 359
    • (1997) J. Global Optim. , vol.11 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 37
    • 84871926611 scopus 로고    scopus 로고
    • Differential evolution trained kernel principal component WNN and kernel binary quantile regression: Application to banking
    • K.N. Reddy, and V. Ravi Differential evolution trained kernel principal component WNN and kernel binary quantile regression: application to banking Knowl.-Based Syst. 39 2013 45 56
    • (2013) Knowl.-Based Syst. , vol.39 , pp. 45-56
    • Reddy, K.N.1    Ravi, V.2
  • 38
    • 84899121155 scopus 로고    scopus 로고
    • A hybrid approach using TOPSIS, Differential Evolution, and Tabu Search to find multiple solutions of constrained non-linear integer optimization problems
    • E.R.F.A. Schneider, and R.A. Krohling A hybrid approach using TOPSIS, Differential Evolution, and Tabu Search to find multiple solutions of constrained non-linear integer optimization problems Knowl.-Based Syst. 62 2014 47 56
    • (2014) Knowl.-Based Syst. , vol.62 , pp. 47-56
    • Schneider, E.R.F.A.1    Krohling, R.A.2
  • 39
    • 84867877241 scopus 로고    scopus 로고
    • DESAMC+DocSum: Differential evolution with self-adaptive mutation and crossover parameters for multi-document summarization
    • R.M. Alguliev, R.M. Aliguliyev, and N.R. Isazade DESAMC+DocSum: differential evolution with self-adaptive mutation and crossover parameters for multi-document summarization Knowl.-Based Syst. 36 2012 21 38
    • (2012) Knowl.-Based Syst. , vol.36 , pp. 21-38
    • Alguliev, R.M.1    Aliguliyev, R.M.2    Isazade, N.R.3
  • 40
    • 77955228260 scopus 로고    scopus 로고
    • Differential Evolution for learning the classification method PROAFTN
    • F. Al-Obeidat, N. Belacel, J.A. Carretero, and P. Mahanti Differential Evolution for learning the classification method PROAFTN Knowl.-Based Syst. 23 2010 418 426
    • (2010) Knowl.-Based Syst. , vol.23 , pp. 418-426
    • Al-Obeidat, F.1    Belacel, N.2    Carretero, J.A.3    Mahanti, P.4
  • 42
    • 70350565063 scopus 로고    scopus 로고
    • On strategies for imbalanced text classification using SVM: A comparative study
    • A. Sun, E.-P. Lim, and Y. Liu On strategies for imbalanced text classification using SVM: a comparative study Decis. Support Syst. 48 2009 191 201
    • (2009) Decis. Support Syst. , vol.48 , pp. 191-201
    • Sun, A.1    Lim, E.-P.2    Liu, Y.3
  • 43
    • 67349126516 scopus 로고    scopus 로고
    • A novel modular neural network for imbalanced classification problems
    • Z.-Q. Zhao A novel modular neural network for imbalanced classification problems Pattern Recogn. Lett. 30 2009 783 788
    • (2009) Pattern Recogn. Lett. , vol.30 , pp. 783-788
    • Zhao, Z.-Q.1
  • 45
    • 0039658591 scopus 로고    scopus 로고
    • Is the risk of bankruptcy a systematic risk?
    • I.D. Dichev Is the risk of bankruptcy a systematic risk? J. Finance 53 1998 1131 1147
    • (1998) J. Finance , vol.53 , pp. 1131-1147
    • Dichev, I.D.1
  • 46
    • 0028454888 scopus 로고
    • Predicting contract surety bond claims using contractor financial data
    • G. Severson, J. Russell, and E. Jaselskis Predicting contract surety bond claims using contractor financial data J. Constr. Eng. Manage. 120 1994 405 420
    • (1994) J. Constr. Eng. Manage. , vol.120 , pp. 405-420
    • Severson, G.1    Russell, J.2    Jaselskis, E.3
  • 47
    • 0026882159 scopus 로고
    • Financial performance analysis for construction industry
    • R. Kangari, F. Farid, and H.M. Elgharib Financial performance analysis for construction industry J. Constr. Eng. Manage. 118 1992 349 361
    • (1992) J. Constr. Eng. Manage. , vol.118 , pp. 349-361
    • Kangari, R.1    Farid, F.2    Elgharib, H.M.3
  • 48
    • 9244259665 scopus 로고    scopus 로고
    • An application of support vector machines in bankruptcy prediction model
    • K.-S. Shin, T.S. Lee, and H.-J. Kim An application of support vector machines in bankruptcy prediction model Expert Syst. Appl. 28 2005 127 135
    • (2005) Expert Syst. Appl. , vol.28 , pp. 127-135
    • Shin, K.-S.1    Lee, T.S.2    Kim, H.-J.3
  • 49
    • 84986174488 scopus 로고    scopus 로고
    • Comparison of neural network and binary logistic regression methods in conceptual design of tall steel buildings
    • H.A. Nageim, R. Nagar, and P.J.G. Lisboa Comparison of neural network and binary logistic regression methods in conceptual design of tall steel buildings Constr. Innovat.: Inform., Process, Manage. 7 2007 240 253
    • (2007) Constr. Innovat.: Inform., Process, Manage. , vol.7 , pp. 240-253
    • Nageim, H.A.1    Nagar, R.2    Lisboa, P.J.G.3
  • 52
    • 26944454497 scopus 로고    scopus 로고
    • ROC graphs: Notes and practical considerations for researchers
    • T. Fawcett ROC graphs: notes and practical considerations for researchers Mach. Learn. 31 2004 1 38
    • (2004) Mach. Learn. , vol.31 , pp. 1-38
    • Fawcett, T.1
  • 53
    • 34347328315 scopus 로고    scopus 로고
    • A market-based framework for bankruptcy prediction
    • A.S. Reisz, and C. Perlich A market-based framework for bankruptcy prediction J. Financ. Stab. 3 2007 85 131
    • (2007) J. Financ. Stab. , vol.3 , pp. 85-131
    • Reisz, A.S.1    Perlich, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.