-
1
-
-
84901006261
-
Stress-induced remodeling of the bacterial proteome
-
Guo MS, Gross CA. 2014. Stress-induced remodeling of the bacterial proteome. Curr Biol 24(10):R424-R434. http://dx.doi.org/10.1016/j.cub.2014.03.023.
-
(2014)
Curr Biol
, vol.24
, Issue.10
, pp. R424-R434
-
-
Guo, M.S.1
Gross, C.A.2
-
2
-
-
0028018268
-
The ubiquitin-proteasome proteolytic pathway
-
Ciechanover A. 1994. The ubiquitin-proteasome proteolytic pathway. Cell 79:13-21. http://dx.doi.org/10.1016/0092-8674(94)90396-4.
-
(1994)
Cell
, vol.79
, pp. 13-21
-
-
Ciechanover, A.1
-
3
-
-
63649113699
-
Origin and function of ubiquitin-like proteins
-
Hochstrasser M. 2009. Origin and function of ubiquitin-like proteins. Nature 458:422-429. http://dx.doi.org/10.1038/nature07958.
-
(2009)
Nature
, vol.458
, pp. 422-429
-
-
Hochstrasser, M.1
-
4
-
-
84858236134
-
Pupylation: proteasomal targeting by a protein modifier in bacteria
-
Burns K, Darwin K. 2012. Pupylation: proteasomal targeting by a protein modifier in bacteria. Methods Mol Biol 832:151-160.
-
(2012)
Methods Mol Biol
, vol.832
, pp. 151-160
-
-
Burns, K.1
Darwin, K.2
-
5
-
-
84893728860
-
The pup-proteasome system of Mycobacterium tuberculosis
-
In Dougan DA (ed), Springer, Dordrecht, The Netherlands
-
Samanovic M, Li H, Darwin K. 2013. The pup-proteasome system of Mycobacterium tuberculosis, p 267-295. In Dougan DA (ed), Regulated proteolysis in microorganisms. Springer, Dordrecht, The Netherlands.
-
(2013)
Regulated proteolysis in microorganisms
, pp. 267-295
-
-
Samanovic, M.1
Li, H.2
Darwin, K.3
-
6
-
-
56449118262
-
Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis
-
Pearce M, Mintseris J, Ferreyra J, Gygi S, Darwin K. 2008. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322:1104-1107. http://dx.doi.org/10.1126/science.1163885.
-
(2008)
Science
, vol.322
, pp. 1104-1107
-
-
Pearce, M.1
Mintseris, J.2
Ferreyra, J.3
Gygi, S.4
Darwin, K.5
-
7
-
-
59149094603
-
Proteasomal protein degradation in mycobacteria is dependent upon a prokaryotic ubiquitin-like protein
-
Burns K, Liu W, Boshoff H, Dorrestein P, Barry C. 2009. Proteasomal protein degradation in mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J Biol Chem 284:3069-3075. http://dx.doi.org/10.1074/jbc.M808032200.
-
(2009)
J Biol Chem
, vol.284
, pp. 3069-3075
-
-
Burns, K.1
Liu, W.2
Boshoff, H.3
Dorrestein, P.4
Barry, C.5
-
8
-
-
84890491578
-
Bacterial proteasome and PafA, the pup ligase, interact to form a modular protein tagging and degradation machine
-
Forer N, Korman M, Elharar Y, Vishkautzan M, Gur E. 2013. Bacterial proteasome and PafA, the pup ligase, interact to form a modular protein tagging and degradation machine. Biochemistry 52:9029-9035. http://dx.doi.org/10.1021/bi401017b.
-
(2013)
Biochemistry
, vol.52
, pp. 9029-9035
-
-
Forer, N.1
Korman, M.2
Elharar, Y.3
Vishkautzan, M.4
Gur, E.5
-
9
-
-
34247866459
-
Characterization of the proteasome accessory factor (paf) operon in Mycobacterium tuberculosis
-
Festa R, Pearce M, Darwin K. 2007. Characterization of the proteasome accessory factor (paf) operon in Mycobacterium tuberculosis. J Bacteriol 189:3044-3050. http://dx.doi.org/10.1128/JB.01597-06.
-
(2007)
J Bacteriol
, vol.189
, pp. 3044-3050
-
-
Festa, R.1
Pearce, M.2
Darwin, K.3
-
10
-
-
79953005868
-
Mycobacterial ubiquitin-like protein ligase PafA follows a two-step reaction pathway with a phosphorylated pup intermediate
-
Guth E, Thommen M, Weber-Ban E. 2011. Mycobacterial ubiquitin-like protein ligase PafA follows a two-step reaction pathway with a phosphorylated pup intermediate. J Biol Chem 286:4412-4419. http://dx.doi.org/10.1074/jbc.M110.189282.
-
(2011)
J Biol Chem
, vol.286
, pp. 4412-4419
-
-
Guth, E.1
Thommen, M.2
Weber-Ban, E.3
-
11
-
-
67349193285
-
Bacterial ubiquitin-like modifier pup is deamidated and conjugated to substrates by distinct but homologous enzymes
-
Striebel F, Imkamp F, Sutter M, Steiner M, Mamedov A, Weber-Ban E. 2009. Bacterial ubiquitin-like modifier pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat Struct Mol Biol 16:647-651. http://dx.doi.org/10.1038/nsmb.1597.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 647-651
-
-
Striebel, F.1
Imkamp, F.2
Sutter, M.3
Steiner, M.4
Mamedov, A.5
Weber-Ban, E.6
-
12
-
-
77950524360
-
The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus
-
Striebel F, Hunkeler M, Summer H, Weber-Ban E. 2010. The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus. EMBO 29:1262-1271. http://dx.doi.org/10.1038/emboj.2010.23.
-
(2010)
EMBO
, vol.29
, pp. 1262-1271
-
-
Striebel, F.1
Hunkeler, M.2
Summer, H.3
Weber-Ban, E.4
-
13
-
-
0348017149
-
The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide
-
Darwin K, Ehrt S, Gutierrez-Ramos J, Weich N, Nathan C. 2003. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302:1963-1966. http://dx.doi.org/10.1126/science.1091176.
-
(2003)
Science
, vol.302
, pp. 1963-1966
-
-
Darwin, K.1
Ehrt, S.2
Gutierrez-Ramos, J.3
Weich, N.4
Nathan, C.5
-
14
-
-
36849063886
-
In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice
-
Gandotra S, Schnappinger D, Monteleone M, Hillen W, Ehrt S. 2007. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med 13:1515-1520. http://dx.doi.org/10.1038/nm1683.
-
(2007)
Nat Med
, vol.13
, pp. 1515-1520
-
-
Gandotra, S.1
Schnappinger, D.2
Monteleone, M.3
Hillen, W.4
Ehrt, S.5
-
15
-
-
0345701347
-
Genes required for mycobacterial growth defined by high density mutagenesis
-
Sassetti C, Boyd D, Rubin E. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77-84. http://dx.doi.org/10.1046/j.1365-2958.2003.03425.x.
-
(2003)
Mol Microbiol
, vol.48
, pp. 77-84
-
-
Sassetti, C.1
Boyd, D.2
Rubin, E.3
-
16
-
-
77649151706
-
Prokaryotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis
-
Festa R, McAllister F, Pearce M, Mintseris J, Burns K, Gygi S, Darwin H. 2010. Prokaryotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis. PLoS One 5:e8589. http://dx.doi.org/10.1371/journal.pone.0008589.
-
(2010)
PLoS One
, vol.5
-
-
Festa, R.1
McAllister, F.2
Pearce, M.3
Mintseris, J.4
Burns, K.5
Gygi, S.6
Darwin, H.7
-
17
-
-
77957239114
-
Proteome-wide identification of mycobacterial pupylation targets
-
Poulsen C, Akhter Y, Jeon A, Ulms G, Meyer H, Stefanski A, Stuhler K, Wilmanns M, Song Y. 2010. Proteome-wide identification of mycobacterial pupylation targets. Mol Syst Biol 6:386. http://dx.doi.org/10.1038/msb.2010.39.
-
(2010)
Mol Syst Biol
, vol.6
, pp. 386
-
-
Poulsen, C.1
Akhter, Y.2
Jeon, A.3
Ulms, G.4
Meyer, H.5
Stefanski, A.6
Stuhler, K.7
Wilmanns, M.8
Song, Y.9
-
18
-
-
75749130245
-
Expansion of the mycobacterial "PUPylome."
-
Watrous J, Burns K, Liu W, Patel A, Hook V, Bafna V, Barry C, Bark S, Dorrestein P. 2010. Expansion of the mycobacterial "PUPylome." Mol BioSyst 6:376-385.
-
(2010)
Mol BioSyst
, vol.6
, pp. 376-385
-
-
Watrous, J.1
Burns, K.2
Liu, W.3
Patel, A.4
Hook, V.5
Bafna, V.6
Barry, C.7
Bark, S.8
Dorrestein, P.9
-
19
-
-
84858212561
-
PupDB: a database of pupylated proteins
-
Tung C. 2012. PupDB: a database of pupylated proteins. BMC Bioinformatics 13:40. http://dx.doi.org/10.1186/1471-2105-13-40.
-
(2012)
BMC Bioinformatics
, vol.13
, pp. 40
-
-
Tung, C.1
-
20
-
-
0031707009
-
The 20S proteasome of Streptomyces coelicolor
-
Nagy I, Tamura T, Vanderleyden J, Baumeister W, De Mot R. 1998. The 20S proteasome of Streptomyces coelicolor. J Bacteriol 180:5448-5453.
-
(1998)
J Bacteriol
, vol.180
, pp. 5448-5453
-
-
Nagy, I.1
Tamura, T.2
Vanderleyden, J.3
Baumeister, W.4
De Mot, R.5
-
21
-
-
34547168773
-
Proteome analysis of Streptomyces coelicolor mutants affected in the proteasome system reveals changes in stress-responsive proteins
-
De Mot R, Schoofs G, Nagy I. 2007. Proteome analysis of Streptomyces coelicolor mutants affected in the proteasome system reveals changes in stress-responsive proteins. Arch Microbiol 188:257-271. http://dx.doi.org/10.1007/s00203-007-0243-8.
-
(2007)
Arch Microbiol
, vol.188
, pp. 257-271
-
-
De Mot, R.1
Schoofs, G.2
Nagy, I.3
-
22
-
-
75749115932
-
The complex extracellular biology of Streptomyces
-
Chater K, Biró S, Lee K, Palmer T, Schrempf H. 2010. The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171-198. http://dx.doi.org/10.1111/j.1574-6976.2009.00206.x.
-
(2010)
FEMS Microbiol Rev
, vol.34
, pp. 171-198
-
-
Chater, K.1
Biró, S.2
Lee, K.3
Palmer, T.4
Schrempf, H.5
-
23
-
-
43249102444
-
The use of the rare UUA codon to define "Expression Space" for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces
-
Chater K, Chandra G. 2008. The use of the rare UUA codon to define "Expression Space" for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. J Microbiol 46:1-11. http://dx.doi.org/10.1007/s12275-007-0233-1.
-
(2008)
J Microbiol
, vol.46
, pp. 1-11
-
-
Chater, K.1
Chandra, G.2
-
24
-
-
55549086417
-
Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium
-
Flärdh K, Buttner M. 2009. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36-49. http://dx.doi.org/10.1038/nrmicro1968.
-
(2009)
Nat Rev Microbiol
, vol.7
, pp. 36-49
-
-
Flärdh, K.1
Buttner, M.2
-
25
-
-
0037046560
-
Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)
-
Bentley S, Chater K, Cerdeno-Tarrage A, Challis G, Thomson N, James K, Harris D, Quail M, Keiser H, Harper D, Bateman A, Brown S, Chandra G, Chen C, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Honsby T, Howarth S, Huang C, Kieser T, Larke L, Murphy L, Oliver K, ONeil S, Rabbinowitsch E, Rajandream M, Rutherford K, Rutter S, Seeger K, Saunder D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell B, Parkhill J, Hopwood D. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141-147. http://dx.doi.org/10.1038/417141a.
-
(2002)
Nature
, vol.417
, pp. 141-147
-
-
Bentley, S.1
Chater, K.2
Cerdeno-Tarrage, A.3
Challis, G.4
Thomson, N.5
James, K.6
Harris, D.7
Quail, M.8
Keiser, H.9
Harper, D.10
Bateman, A.11
Brown, S.12
Chandra, G.13
Chen, C.14
Collins, M.15
Cronin, A.16
Fraser, A.17
Goble, A.18
Hidalgo, J.19
Honsby, T.20
Howarth, S.21
Huang, C.22
Kieser, T.23
Larke, L.24
Murphy, L.25
Oliver, K.26
Oneil, S.27
Rabbinowitsch, E.28
Rajandream, M.29
Rutherford, K.30
Rutter, S.31
Seeger, K.32
Saunder, D.33
Sharp, S.34
Squares, R.35
Squares, S.36
Taylor, K.37
Warren, T.38
Wietzorrek, A.39
Woodward, J.40
Barrell, B.41
Parkhill, J.42
Hopwood, D.43
more..
-
26
-
-
0003869903
-
Practical Streptomyces genetics
-
The John Innes Foundation, Norwich, England
-
Kieser T, Bibb M, Buttner M, Chater K, Hopwood D. 2000. Practical Streptomyces genetics. The John Innes Foundation, Norwich, England.
-
(2000)
-
-
Kieser, T.1
Bibb, M.2
Buttner, M.3
Chater, K.4
Hopwood, D.5
-
27
-
-
0037452723
-
PCR targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin
-
Gust B, Challis G, Fowler K, Kieser T, Chater K. 2003. PCR targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541-1546. http://dx.doi.org/10.1073/pnas.0337542100.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 1541-1546
-
-
Gust, B.1
Challis, G.2
Fowler, K.3
Kieser, T.4
Chater, K.5
-
28
-
-
78549285675
-
"Depupylation" of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates
-
Burns K, Cerda-Maira F, Wang T, Li H, Bishal W, Darwin K. 2010. "Depupylation" of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates. Mol Cell 39:821-828. http://dx.doi.org/10.1016/j.molcel.2010.07.019.
-
(2010)
Mol Cell
, vol.39
, pp. 821-828
-
-
Burns, K.1
Cerda-Maira, F.2
Wang, T.3
Li, H.4
Bishal, W.5
Darwin, K.6
|